Skip to main content

Effect of Delay Sensitivity in Life and Extended Life

  • Conference paper
  • First Online:
Cellular Automata Technology (ASCAT 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2021))

Included in the following conference series:

  • 85 Accesses

Abstract

This paper shows the dynamics of Game of Life (Life) under delay-sensitive updating scheme where, during information sharing, neighbouring cells are associated with delay and probabilistic loss of information perturbation. Here, we explore the possibilities of continuous and abrupt change in phase during evolution of delay-sensitive Life. Next, we analyse the potential of micro-configurations (including oscillating, moving, stable micro-configurations) under delay-sensitive Life. Moreover, to understand the richness of Life, we observe the dynamics of extended Life rules and Life-like rules (both low and high density) under delay-sensitive environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here, the term ‘structural’ indicates modification in the topological component interaction.

  2. 2.

    a) blinker, (b) pulsar, (d) toad, (f) beacon, (g) largeblock.

  3. 3.

    (c) glider, (e) spaceship.

  4. 4.

    (h) beehive, (i) boat, (j) loaf, (k) ring, (l) ship, (m) tub.

References

  1. Adachi, S., Lee, J., Peper, F., Umeo, H.: Kaleidoscope of life: a 24-neighbourhood outer-totalistic cellular automaton. Physica D 237(6), 800–817 (2008)

    Article  MathSciNet  Google Scholar 

  2. Adachi, S., Peper, F., Lee, J.: The game of life at finite temperature. Physica D 198(3), 182–196 (2004)

    Article  Google Scholar 

  3. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2. Academic Press, London (1984)

    Google Scholar 

  4. Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pp. 382–387. The MIT Press (1994)

    Google Scholar 

  5. Blok, H.J., Bergersen, B.: Effect of boundary conditions on scaling in the “game of life". Phys. Rev. E 55, 6249–6252 (1997)

    Article  Google Scholar 

  6. Blok, H.J., Bergersen, B.: Synchronous versus asynchronous updating in the “game of life". Phys. Rev. E 59, 3876–3879 (1999)

    Article  Google Scholar 

  7. Das, S., Roy, S., Bhattacharjee, K.: The Mathematical Artist: A Tribute To John Horton Conway. Emergence, Complexity and Computation, Springer, Cham (2022). https://doi.org/10.1007/978-3-031-03986-7

    Book  Google Scholar 

  8. de la Torre, A.C., Mártin, H.O.: A survey of cellular automata like the “game of life’’. Physica A Stat. Mech. Appl. 240(3), 560–570 (1997)

    Article  Google Scholar 

  9. Eppstein, D.: Growth and Decay in Life-Like Cellular Automata, pp. 71–97. Springer, London (2010). https://doi.org/10.1007/978-1-84996-217-9_6

    Book  Google Scholar 

  10. Fatès, N.: Does Life Resist Asynchrony?, pp. 257–274. Springer, London (2010). https://doi.org/10.1007/978-1-84996-217-9_14

    Book  Google Scholar 

  11. Fatès, N., Morvan, M.: Perturbing the topology of the game of life increases its robustness to asynchrony. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 111–120. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1_12

    Chapter  Google Scholar 

  12. Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223(4), 120–123 (1970)

    Google Scholar 

  13. Martínez, G.J., Adamatzky, A., Seck-Tuoh-Mora, J.C.: Some Notes About the Game of Life Cellular Automaton, pp. 93–104. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-03986-7_4

    Book  Google Scholar 

  14. Monetti, R.A.: First-order irreversible phase transitions in a nonequilibrium system: mean-field analysis and simulation results. Phys. Rev. E 65, 016103 (2001)

    Article  Google Scholar 

  15. Monetti, R.A., Albano, E.V.: Critical edge between frozen extinction and chaotic life. Phys. Rev. E 52, 5825–5831 (1995)

    Article  Google Scholar 

  16. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Illinois (1966)

    Google Scholar 

  17. Peña, E., Sayama, H.: Life worth mentioning: complexity in life-like cellular automata. Artif. Life 27(2), 105–112 (2021)

    Article  Google Scholar 

  18. Regnault, D., Schabanel, N., Thierry, É.: On the analysis of “Simple’’ 2D stochastic cellular automata. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 452–463. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_41

    Chapter  Google Scholar 

  19. Roy, S.: A study on delay-sensitive cellular automata. Phys. A 515, 600–616 (2019)

    Article  MathSciNet  Google Scholar 

  20. Roy, S., Das, S., Mukherjee, A.: Elementary cellular automata along with delay sensitivity can model communal riot dynamics. Complex Syst. 31(3), 341–361 (2022)

    Article  Google Scholar 

  21. Schulman, L.S., Seiden, P.E.: Statistical mechanics of a dynamical system based on Conway’s game of life. J. Stat. Phys. 19(3), 293–314 (1978)

    Article  MathSciNet  Google Scholar 

  22. Wolfram, S.: Two Different Directions: John Conway and Stephen Wolfram, pp. 21–71. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-03986-7_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, S. (2024). Effect of Delay Sensitivity in Life and Extended Life. In: Dalui, M., Das, S., Formenti, E. (eds) Cellular Automata Technology. ASCAT 2024. Communications in Computer and Information Science, vol 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-56943-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56943-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56942-5

  • Online ISBN: 978-3-031-56943-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics