Skip to main content

On the Impact of Directed Mutation Applied to Evolutionary 4-Part Harmony Models

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2024)

Abstract

This paper analyzes the difficulty of finding solutions for the 4-part harmony problem, both from the point of view of the size of the search space and the time required to run the algorithm. These considerations led to improved running time through parallelization, precalculation of the fitness function, and directed mutation, which reduces the time to solution. Moreover, we show how combining these techniques allows us to extend the improvements to different harmony models, including new synthetic ones that may be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lopez-Rincon, O., Starostenko, O., Ayala-San Martin, G.: Algoritmic music Composition based on artificial intelligence: a survey. In: International Conference on Electronics, Communications and Computers (CONIELECOMP), pp. 187–193 (2018). https://doi.org/10.1109/CONIELECOMP.2018.8327197

  2. Liu, C.H., Ting, C.K.: Computational intelligence in music composition: a survey. IEEE Trans. Emerg. Top. Comput. Intell. 1(2), 2–15 (2017)

    Google Scholar 

  3. de Vega, F.F.: Revisiting the 4-part harmonization problem with GAs: a critical review and proposals for improving. In: IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, pp. 1271–1278 (2017). https://doi.org/10.1109/CEC.2017.7969451

  4. Fernandez De Vega, F., Alvarado, J., Sanchez, A., Serrano, M., Pacioni, E.: Evolutionary algorithms: a new hope for the future of music teaching. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation (GECCO ’23 Companion), pp. 65–66. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3583133.3596945

  5. Horner, A., Goldberg, D.E.: Genetic algorithms and computer-assisted music composition. In: International Conference on Mathematics and Computing, pp. 437–441 (1991)

    Google Scholar 

  6. McIntyre, R.A.: Bach in a box: the evolution of four part baroque harmony using the genetic algorithm. In: Evolutionary Computation: IEEE World Congress on Computational Intelligence. Proceedings of the First IEEE Conference 1994, pp. 852–857 (1994). https://doi.org/10.1109/ICEC.1994.349943

  7. Kaliakatsos-Papakostas, M., Cambouropoulos, E.: Probabilistic harmonization with fixed intermediate chord constraints. In: ICMC (2014). https://doi.org/10.13140/2.1.3079.5526

  8. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005). https://doi.org/10.1007/s00500-003-0328-5

    Article  Google Scholar 

  9. Shi, L., Rasheed, K.: A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms. Computational Intel. in Expensive Opti. Prob., ALO, 2 (2010)

    Google Scholar 

  10. Hosder, S., et al.: Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport. Optim. Eng. 2, 431–452 (2001)

    Google Scholar 

  11. Bueche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. Part C 2(35), 183–194 (2005). https://doi.org/10.1109/tsmcc.2004.841917

    Article  Google Scholar 

  12. Ulmer, H., Streichert, F., Zell, A.: Model-assisted evolution strategies. Knowl. Inc. Evolutionary Comput. 333–355 (2005)

    Google Scholar 

  13. Melamed, D., et al.: De novo mutation rates at the single-mutation resolution in a human HBB gene-region associated with adaptation and genetic disease. Genome Res. (2022). https://doi.org/10.1101/gr.276103.121

  14. Bhandari, D., Pal, N.R., Pal, S.K.: Directed mutation in genetic algorithms. Inf. Sci. 79(3–4), 251–270 (1994). https://doi.org/10.1016/0020-0255(94)90123-6

    Article  Google Scholar 

  15. Tang, P.-H., Tseng, M.-H.: Adaptive directed mutation for real-coded genetic algorithms. Appl. Soft Comput. 13(1), 600–614 (2013). https://doi.org/10.1016/j.asoc.2012.08.035

  16. Puerta, B.R., Barrancas, F.D., Chavez, F., de Vega, F.F.: Un análisis preliminar de nuevos modelos de mutación dirigida en algoritmos genéticos. In: Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018), Granada, España

    Google Scholar 

  17. Carvalho, P., Magane, J., Lourenco, N., Machado, P.: Context matters: adaptive mutation for grammars. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds.) Genetic Programming. EuroGP 2023. LNCS, vol. 13986, pp. 117–132 . Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29573-7_8

Download references

Acknowledgements

We acknowledge support from Spanish Ministry of Economy and Competitiveness under projects PID2020-115570GB-C21 funded by MCIN/AEI/10.13039/501100011033. Junta de Extremadura under project GR15068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Pacioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pacioni, E., Fernández De Vega, F. (2024). On the Impact of Directed Mutation Applied to Evolutionary 4-Part Harmony Models. In: Johnson, C., Rebelo, S.M., Santos, I. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2024. Lecture Notes in Computer Science, vol 14633. Springer, Cham. https://doi.org/10.1007/978-3-031-56992-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56992-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56991-3

  • Online ISBN: 978-3-031-56992-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics