Skip to main content

General Lines, Routes and Perspectives of Wetware Embodied AI. From Its Organizational Bases to a Glimpse on Social Chemical Robotics

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2023)

Abstract

In this contribution we would like to put forward a proposal about a novel form of AI, called “Wetware Embodied AI”, based on the construction of bio-chemical dynamical systems intended as models of living and cognitive systems. The ambition is complementing common approaches in robotics and AI, mainly characterized by behavioral imitation of the cognitive processes under inquiry, with more radical approaches, aiming at creating artificial models reproducing (aspects of) the organizational mechanisms underlying the target process in nature. To this aim, we will first recapitulate some aspects of frontier research lines in AI (in particular, Embodied AI and related approaches), and then present a wetware version of it, together with a brief plan for theoretical and experimental investigations. The role of synthetic biology and systems chemistry to accomplish these goals will be highlighted. Considering the connection of this program with the current experimental trends about communicating synthetic cells, a final brief comment on the “social chemical robotics” perspectives closes the article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More exhaustive descriptions of the theoretical, technical and applicative aspects of the wetware autopoietic EAI program can be found in, e.g., [12,17]. The epistemological aspects are thoroughly discussed in [18].

References

  1. Ryle, G.: The Concept of Mind. University of Chicago, Chicago (1949)

    Google Scholar 

  2. Varela, F.J., Thompson, E.T., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Cambridge (1991)

    Book  Google Scholar 

  3. Ceruti, M., Damiano, L.: Plural embodiment(s) of mind. Genealogy and guidelines for a radically embodied approach to mind and consciousness. Front. Psychol. 9, 2204 (2018)

    Google Scholar 

  4. Brooks, R.: Intelligence without representation. Artif. Intell. 47(1–3), 139–159 (1991)

    Article  Google Scholar 

  5. Steels, L., Brooks, R. (eds.): The Artificial Life Route to Artificial Intelligence. Routledge, London (1995)

    Google Scholar 

  6. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  7. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living, 1st edn. D. Reidel Publishing Company, Dordrecht (1980)

    Book  Google Scholar 

  8. Clark, A.: Being There: Putting Brain, Body, and World Together Again. MIT Press, Cambridge (1997)

    Google Scholar 

  9. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  10. Brooks, R.A.: From earwigs to humans. Robot. Auton. Syst. 20(2), 291–304 (1997)

    Article  Google Scholar 

  11. Ziemke T.: Are robots embodied? In: Balkenius, C., Zlatev, J., Kozima, H., Dautenhahn, K., Breazeal, C. (eds.) Proceedings of the First International Workshop on Epigenetic Robotics. Modeling Cognitive Development in Robotic Systems (17–18 September 2001; Lund, Sweden), Lund University Cognitive Studies, vol. 85, pp. 75–83 (2001)

    Google Scholar 

  12. Damiano, L., Stano, P.: Synthetic biology and artificial intelligence. Grounding a cross-disciplinary approach to the synthetic exploration of (embodied) cognition. Complex Syst. 27, 199–228 (2018)

    Google Scholar 

  13. Dreyfus, H.L.: Why Heideggerian AI failed and how fixing it would require making it more Heideggerian. Artif. Intell. 171(18), 1137–1160 (2007)

    Article  Google Scholar 

  14. Di Paolo, E.A.: Organismically-inspired robotics: homeostatic adaptation and teleology beyond the closed sensorimotor loop. In: Murase K., Asakura T. (eds.) Dynamical Systems Approach to Embodiment and Sociality, pp. 19–42. Advanced Knowledge International, Adelaide, Australia (2003)

    Google Scholar 

  15. Froese, T., Ziemke, T.: Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif. Intell. 173(3), 466–500 (2009)

    Article  Google Scholar 

  16. Varela, F.J.: Principles of Biological Autonomy. Elsevier North-Holland Inc, New York (1979)

    Google Scholar 

  17. Stano, P., Damiano, L.: Synthetic cell research: is technical progress leaving theoretical and epistemological investigations one step behind? Front. Robot. AI 10, 1143196 (2023)

    Article  Google Scholar 

  18. Damiano, L., Stano, P.: Explorative synthetic biology in AI. Criteria of relevance and a taxonomy for synthetic models of living and cognitive processes. Artif. Life 29, 367–387 (2023)

    Google Scholar 

  19. Guiloff, G.D.: Autopoiesis and neobiogenesis. In: Zeleny, M. (ed.) Autopoiesis. A Theory of Living Organization, pp. 118–124. North Holland, New York (1981)

    Google Scholar 

  20. Luisi, P.L., Varela, F.J.: Self-replicating micelles – a chemical version of a minimal autopoietic system. Orig. Life Evol. Biosph. 19(6), 633–643 (1989)

    Article  Google Scholar 

  21. Oberholzer, T., Wick, R., Luisi, P.L., Biebricher, C.K.: Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res. Commun. 207(1), 250–257 (1995)

    Article  Google Scholar 

  22. Oberholzer, T., Albrizio, M., Luisi, P.L.: Polymerase chain-reaction in liposomes. Chem. Biol. 2(10), 677–682 (1995)

    Article  Google Scholar 

  23. Oberholzer, T., Nierhaus, K.H., Luisi, P.L.: Protein expression in liposomes. Biochem. Biophys. Res. Commun. 261(2), 238–241 (1999)

    Article  Google Scholar 

  24. Cariani, P.: To evolve an ear. Epistemological implications of Gordon Pask’s electrochemical devices. Syst. Res. 10, 19–33 (1993)

    Google Scholar 

  25. Harnad, S.: The symbol-grounding problem. Phys. D Nonlinear Phenom. 42, 335–346 (1990)

    Article  Google Scholar 

  26. Floridi, L.: The Philosophy of Information. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  27. Hoffmann, P.M.: Life’s Ratchet: How Molecular Machines Extract Order from Chaos. Basic Books. A Member of the Perseus Books Group, New York (2012)

    Google Scholar 

  28. Phillips, R., Quake, S.R.: The biological frontier of physics. Phys. Today 59, 38–43 (2006)

    Article  Google Scholar 

  29. Zepik, H.H., Blochliger, E., Luisi, P.L.: A chemical model of homeostasis. Angew. Chem. Int. Edit. 40, 199–202 (2001)

    Article  Google Scholar 

  30. Kiverstein, J., Kirchhoff, M.D., Froese, T.: The problem of meaning: the free energy principle and artificial agency. Front. Neurorobot. 16, 844773 (2022)

    Article  Google Scholar 

  31. Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.L.: Autopoietic self-reproduction of fatty-acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994)

    Article  Google Scholar 

  32. Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. U.S.A. 101(51), 17669–17674 (2004)

    Article  Google Scholar 

  33. Kita, H., et al.: Replication of genetic information with self-encoded replicase in liposomes. ChemBioChem 9(15), 2403–2410 (2008)

    Article  Google Scholar 

  34. Berhanu, S., Ueda, T., Kuruma, Y.: Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10(1), 1325 (2019)

    Article  Google Scholar 

  35. Miele, Y., et al.: Self-division of giant vesicles driven by an internal enzymatic reaction. Chem. Sci. 11, 3228–3235 (2020)

    Article  Google Scholar 

  36. Kurihara, K., Tamura, M., Shohda, K.-I., Toyota, T., Suzuki, K., Sugawara, T.: Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3(10), 775–781 (2011)

    Article  Google Scholar 

  37. Stano, P.: Chemical neural networks and synthetic cell biotechnology: preludes to chemical AI. In: Chicco, D., et al. (eds.) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2021. Lecture Notes in Computer Science, vol. 13483, pp. 1–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20837-9_1

  38. Stano, P.: Sketching how synthetic cells can function as a platform to investigate chemical AI and information theories in the wetware domain. In: Bindhu, V., Tavares, J.M.R.S., Vuppalapati, C. (eds.) Proceedings of Fourth International Conference on Communication, Computing and Electronics Systems. ICCCES 2022. Lecture Notes in Electrical Engineering, vol. 977, pp. 571–584. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-7753-4_43

  39. Gentili, P.L., Stano, P.: Chemical neural networks inside synthetic cells? A proposal for their realization and modeling. Front. Bioeng. Biotechnol. 10, 927110 (2022)

    Article  Google Scholar 

  40. Braccini, M., Collison, E., Roli, A., Fellermann, H., Stano, P.: Recurrent neural networks in synthetic cells: a route to autonomous molecular agents? Front. Bioeng. Biotechnol. 11, 1210334 (2023)

    Article  Google Scholar 

  41. Gentili, P.L., Stano, P.: Tracing a new path in the field of AI and robotics: mimicking human intelligence through chemistry. Part I: molecular and supramolecular chemistry. Front. Robot. AI 10, 1238492 (2023)

    Google Scholar 

  42. Gentili, P.L., Stano, P.: Tracing a new path in the field of AI and robotics: mimicking human intelligence through chemistry. Part II: systems chemistry. Front. Robot. AI 10, 1266011 (2023)

    Google Scholar 

  43. Lentini, R., et al.: Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3(2), 117–123 (2017)

    Article  Google Scholar 

  44. Rampioni, G., et al.: Synthetic cells produce a quorum sensing chemical signal perceived by pseudomonas aeruginosa. Chem. Commun. 54, 2090–2093 (2018)

    Article  Google Scholar 

  45. Leduc, P.R., et al.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2(1), 3–7 (2007)

    Article  Google Scholar 

  46. Damiano, L., Dumouchel, P.G.: Emotions in relation. Epistemological and ethical scaffolding for mixed human-robot social ecologies. HUMANA.MENTE J. Philos. Stud. 13(37), 181–206 (2020)

    Google Scholar 

  47. Stano, P., Gentili, P.L., Damiano, L., Magarini, M.: A role for bottom-up synthetic cells in the internet of bio-nano things? Molecules 28, 5564 (2023)

    Article  Google Scholar 

  48. Miłkowski, M., et al.: From wide cognition to mechanisms: a silent revolution. Front. Psychol. 9, 2393 (2018)

    Article  Google Scholar 

  49. Damiano, L.: Homes as human–robot ecologies: an epistemological inquiry on the “domestication” of robots. In: The Home in the Digital Age; Routledge, Abingdon, UK (2021)

    Google Scholar 

  50. Dumouchel, P., Damiano, L.: Living with Robots. Harvard University Press, Cambridge (2017)

    Book  Google Scholar 

  51. Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1, 377–383 (2009)

    Article  Google Scholar 

  52. Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: (2012) Semi-synthetic minimal cells as a tool for biochemical ICT. BioSystems 109, 24–34 (2012)

    Article  Google Scholar 

  53. Nakano, T.: Molecular communication: a 10 year retrospective. IEEE Trans. Mol. Biol. Multi-Scale Comm. 3, 71–78 (2017)

    Article  Google Scholar 

  54. Akyildiz, I.F., Pierobon, M., Balasubramaniam, S., Koucheryavy, Y.: The internet of bio-nano things. IEEE Commun. Mag. 53(3), 32–40 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research has been carried out within the project “Org(SB-EAI) – An Organizational Approach to the Synthetic Modeling of Cognition based on Synthetic Biology and Embodied AI” (PRIN-2022, grant number 20222HHXAX), funded by the Ministero dell’Università e della Ricerca (MUR). The discussion presented in Sect. 3.1 has been adapted from our recently published article [47].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luisa Damiano or Pasquale Stano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damiano, L., Stano, P. (2024). General Lines, Routes and Perspectives of Wetware Embodied AI. From Its Organizational Bases to a Glimpse on Social Chemical Robotics. In: Villani, M., Cagnoni, S., Serra, R. (eds) Artificial Life and Evolutionary Computation. WIVACE 2023. Communications in Computer and Information Science, vol 1977. Springer, Cham. https://doi.org/10.1007/978-3-031-57430-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57430-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57429-0

  • Online ISBN: 978-3-031-57430-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics