Skip to main content

Entangled Gondolas. Design of Multi-layer Networks of Quantum-Driven Robotic Swarms

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2023)

Abstract

Swarms of robots can be thought of as networks, using the tools from telecommunications and network theory. A recent study designed sets of aquatic swarms of robots to clean the canals of Venice, interacting with computers on gondolas. The interaction between gondolas is one level higher in the hierarchy of communication. In other studies, pairwise communications between the robots in robotic swarms have been modeled via quantum computing. Here, we first apply quantum computing to the telecommunication-based model of an aquatic robotic swarm. Then, we use multilayer networks to model interactions within the overall system. Finally, we apply quantum entanglement to formalize the interaction and synchronization between “heads” of the swarms, that is, between gondolas. Our study can foster new strategies for search-and-rescue robotic-swarm missions, strengthening the connection between different areas of research in physics and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    It is the application of the codes in https://github.com/medusamedusa/10_little_ants to the considered case.

References

  1. Atchade-Adelomou, P., Alonso-Linaje, P., Albo-Canals, J., Casado-Fauli, D.: qRobot: a quantum computing approach in mobile robot order picking and batching problem solver optimization. Algorithms 14 (2021)

    Google Scholar 

  2. Biedrzycki, R., Arabas, J., Warchulski, E.: A version of NL-SHADE-RSP algorithm with midpoint for CEC 2022 single objective bound constrained problems. In: IEEE, Padua, Italy (2022)

    Google Scholar 

  3. Boccaletti, S., Bianconi, G., Criado, R., Genio, C.: The structure and dynamics of multilayer networks. Phys. Rep. (2014)

    Google Scholar 

  4. De Domenico, M., Granell, C., Porter, M., Arenas, A.: The physics of spreading processes in multilayer networks. Nat. Phys. (2016)

    Google Scholar 

  5. De Rango, F., Palmieri, N., Yang, X.S., et al.: Swarm robotics in wireless distributed protocol design for coordinating robots involved in cooperative tasks. Soft. Comput. 7(4), 4251–4266 (2018)

    Article  Google Scholar 

  6. Dong, D., Chen, C., Li, H., Tarn, T.: Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38, 1207–1220 (2008)

    Article  Google Scholar 

  7. Fazio, P., Mehic, M., Voznak, M.: Effects of sampling frequency on node mobility prediction in dynamic networks: a spectral view. Digit. Commun. Netw. 9, 1009–1022 (2022)

    Article  Google Scholar 

  8. Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)

    Article  Google Scholar 

  9. Granell, C., Gómez, S., Arenas, A.: Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014)

    Article  Google Scholar 

  10. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018)

    Book  Google Scholar 

  11. Ivancevic, V.: Entangled swarm intelligence: quantum computation for swarm robotics. Math. Eng. Sci. Aerosp. 7, 441–451 (2016)

    Google Scholar 

  12. Koukam, A., Abbas-Turki, A., Hilaire, V., Ruichek, Y.: Towards a quantum modeling approach to reactive agents. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (2021)

    Google Scholar 

  13. Kwak, Y., Yun, W., Jung, S., Kim, J., Kim, J.: Introduction to quantum reinforcement learning: theory and PennyLane-based implementation. In: International Conference on Information and Communication Technology Convergence (ICTC) (2021)

    Google Scholar 

  14. Lamata, L., et al.: Quantum mechatronics. Electronics 10, 2483 (2021)

    Article  Google Scholar 

  15. Mannone, M., Seidita, V., Chella, A.: Categories, quantum computing, and swarm robotics: a case study. Mathematics 3(372) (2022)

    Google Scholar 

  16. Mannone, M., Seidita, V., Chella, A.: Modeling and designing a robotic swarm: a quantum computing approach. Swarm Evol. Comput. 79(101297) (2023)

    Google Scholar 

  17. Mannone, M., Seidita, V., Chella, A.: The sound of swarm. Auditory description of robotic movements. ACM Trans. Hum.-Robot Interact. 12(4), 1–27 (in press)

    Google Scholar 

  18. Mannone, M., Seidita, V., Chella, A., Giacometti, A., Fazio, P.: Energy and SNR-aware robotic swarm coordination for aquatic cleaning operations. In: 97th IEEE Vehicular Technology Conference (VTC), Florence, Italy, pp. 1–7 (2023, in press)

    Google Scholar 

  19. Haselhoff, T., et al.: Complex Networks for Analyzing the Urban Acoustic Environment. EarthArXiV. https://eartharxiv.org/repository/view/5371/

  20. Palmieri, N., Yang, X.S., De Rango, F., et al.: Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption. Neural Comput. Appl. 31, 263–286 (2019)

    Article  Google Scholar 

  21. Srivastava, S.: Quantum Robotics: Applications of Quantum Computing in Robotic Science. Analytics Insight (2020). https://www.analyticsinsight.net/quantum-robotics-applications-quantum-computing-robotic-science/

  22. Solé-Ribalta, A., Gómez, S., Arenas, A.: Congestion induced by the structure of multiplex networks. Phys. Rev. Lett. 116, 108701 (2016)

    Article  Google Scholar 

  23. Stolze, J., Suter, D.: Quantum Computing: A Short Course from Theory to Experiment. Wiley, Hoboken (2004)

    Book  Google Scholar 

  24. Tropea, M., Palmieri, N., De Rango, F.: Modeling the coordination of a multiple robots using nature inspired approaches. In: Cicirelli, F., Guerrieri, A., Pizzuti, C., Socievole, A., Spezzano, G., Vinci, A. (eds.) WIVACE 2019. CCIS, vol. 1200, pp. 124–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45016-8_13

    Chapter  Google Scholar 

  25. Wichert, A.: Principles of Quantum Artificial Intelligence. World Scientific (2020)

    Google Scholar 

  26. Zhu, K., Jiang, M.: Quantum artificial fish swarm algorithm. In: Proceedings of the 8th World Congress on Intelligent Control and Automation (2010)

    Google Scholar 

  27. Bahadori, F., et al.: The sum secrecy rate of NOMA-enabled VLC network with the random-way point mobility model. In: Proceedings of the Third South American Colloquium on Visible Light Communications (SACVLC) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Mannone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mannone, M., Marwan, N., Seidita, V., Chella, A., Giacometti, A., Fazio, P. (2024). Entangled Gondolas. Design of Multi-layer Networks of Quantum-Driven Robotic Swarms. In: Villani, M., Cagnoni, S., Serra, R. (eds) Artificial Life and Evolutionary Computation. WIVACE 2023. Communications in Computer and Information Science, vol 1977. Springer, Cham. https://doi.org/10.1007/978-3-031-57430-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57430-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57429-0

  • Online ISBN: 978-3-031-57430-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics