Skip to main content

Collectively Enhancing IoT Security: A Privacy-Aware Crowd-Sourcing Approach

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2023)

Abstract

Security configurations remain challenging for trained administrators. Nowadays, due to the advent of the Internet of Things (IoT), untrained users operate numerous and heterogeneous Internet-facing services in manifold use case-specific scenarios. In this work, we close the growing gap between the complexity of IoT security configuration and the expertise of the affected users. To this end, we propose ColPSA, a platform for collective and privacy-aware security advice that allows users to optimize their configuration by exchanging information about what security can be realized given their IoT deployment and scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amazon Web Services: AWS IoT Device Defender (2023). https://aws.amazon.com/iot-device-defender/. Accessed 09 Jan 2023

  2. Avast: Avast Network Inspector (2022). https://support.avast.com/en-ww/article/use-network-inspector. Accessed 09 Jan 2023

  3. Dahlmanns, M., et al.: Easing the conscience with OPC UA: an internet-wide study on insecure deployments. In: ACM IMC (2020)

    Google Scholar 

  4. Dahlmanns, M., et al.: Missed opportunities: measuring the untapped TLS support in the industrial internet of things. In: ACM ASIACCS (2022)

    Google Scholar 

  5. Dahlmanns, M., et al.: Secrets revealed in container images: an internet-wide study on occurrence and impact. In: ACM ASIACCS (2023)

    Google Scholar 

  6. Durumeric, Z., et al.: ZMap: fast internet-wide scanning and its security applications. In: USENIX SEC (2013)

    Google Scholar 

  7. Erba, A., et al.: Security analysis of vendor implementations of the OPC UA protocol for industrial control systems. In: ACM CPSIoTSec (2022)

    Google Scholar 

  8. Federal Office for Information Security: OPC UA Security Analysis (2017)

    Google Scholar 

  9. Federal Office for Information Security: Cryptographic Mechanisms: Recommendations and Key Lengths Part 4 - Use of Secure Shell (SSH). BSI TR-02102-4 (2021)

    Google Scholar 

  10. Federal Office for Information Security: Cryptographic Mechanisms: Recommendations and Key Lengths: Use of Transport Layer Security (TLS). BSI TR-02102-2 (2021)

    Google Scholar 

  11. Heer, T., et al.: Security challenges in the IP-based internet of things. Wirel. Pers. Commun. 61(3), 527–542 (2011)

    Article  Google Scholar 

  12. Hills, R.: arp-scan(1) - Linux man page (2016)

    Google Scholar 

  13. Huang, D.Y., et al.: IoT inspector: crowdsourcing labeled network traffic from smart home devices at scale. ACM IMWUT 4(2), 1–21 (2020)

    Google Scholar 

  14. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 82, 395–411 (2018)

    Article  Google Scholar 

  15. Krombholz, K., et al.: "I Have No Idea What i’m Doing": on the usability of deploying HTTPS. In: USENIX SEC. SEC’17, USA (2017)

    Google Scholar 

  16. Lantz, B., et al.: A network in a laptop: rapid prototyping for software-defined networks. In: ACM Hotnets. Hotnets-IX, New York (2010)

    Google Scholar 

  17. Madakam, S., et al.: Internet of things (IoT): a literature review. J. Comput. Commun. 3(5), 164–173 (2015)

    Article  Google Scholar 

  18. Maggi, F., et al.: The Fragility of Industrial IoT’s Data Backbone: Security and Privacy Issues in MQTT and CoAP Protocols. Tech. rep., Trend Micro Inc. (2018)

    Google Scholar 

  19. Meidan, Y., et al.: ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis. In: ACM SAC. SAC ’17, New York (2017)

    Google Scholar 

  20. OPC Foundation: OPC Unified Architecture – Part 2: Security Model. OPC 10000–2: OPC Unified Architecture (2018)

    Google Scholar 

  21. Papadogiannakis, A., et al.: Improving the performance of passive network monitoring applications with memory locality enhancements. Comput. Commun. 35(1), 129–140 (2012)

    Article  Google Scholar 

  22. Pohlmann, U., Sikora, A.: Practical security recommendations for building OPC UA applications. Ind. Ethernet Book 106 (2018)

    Google Scholar 

  23. Qualys: SSL Server Test (2023). https://www.ssllabs.com/ssltest/. Accessed 09 Jan 2023

  24. Rahalkar, S.: OpenVAS. Apress, Berkeley, CA (2019)

    Google Scholar 

  25. Rescorla, E., Dierks, T.: The transport layer security (TLS) protocol version 1.2. RFC 5246 (2008)

    Google Scholar 

  26. Roesch, M.: Snort: lightweight intrusion detection for networks. In: USENIX LISA (1999)

    Google Scholar 

  27. Serror, M., et al.: Challenges and opportunities in securing the industrial internet of things. IEEE Trans. Ind. Informat. 17(5), 2985–2996 (2021)

    Article  Google Scholar 

  28. Sha, K., et al.: On security challenges and open issues in internet of things. Future Gener. Comput. Syst. 83, 326–337 (2018)

    Article  Google Scholar 

  29. Sheffer, Y., et al.: Recommendations for secure use of transport layer security (TLS) and datagram transport layer security (DTLS). IETF RFC 7525 (2015)

    Google Scholar 

  30. Srinivasa, S., et al.: Open for hire: attack trends and misconfiguration pitfalls of IoT devices. In: ACM IMC (2021)

    Google Scholar 

  31. Testa, J.: ssh-audit (2023). https://github.com/jtesta/ssh-audit. Accessed 09 Jan 2023

  32. Wetter, D.: testssl.sh (2022). https://testssl.sh/. Accessed 09 Jan 2023

Download references

Acknowledgements

Funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) — Research Project VeN2uS — 03EI6053K.Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC-2023 Internet of Production — 390621612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Dahlmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahlmanns, M., Matzutt, R., Dax, C., Wehrle, K. (2024). Collectively Enhancing IoT Security: A Privacy-Aware Crowd-Sourcing Approach. In: Mosbah, M., Sèdes, F., Tawbi, N., Ahmed, T., Boulahia-Cuppens, N., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2023. Lecture Notes in Computer Science, vol 14552. Springer, Cham. https://doi.org/10.1007/978-3-031-57540-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57540-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57539-6

  • Online ISBN: 978-3-031-57540-2

Publish with us

Policies and ethics