Skip to main content

Accurify: Automated New Testflows Generation for Attack Variants in Threat Hunting

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2023)

Abstract

In the ever-evolving landscape of cyber security, threat hunting has emerged as a proactive defense line to detect advanced threats. To evade detection, the attackers constantly change their techniques and tactics creating new attack variants. However, the manual creation and execution of testflows to test the attacks and their variants generated by threat hunting systems remain a strenuous task that requires elusive knowledge and is time-consuming. This paper introduces Accurify, a solution that automates the generation of new testflows to test the existence of attack variants using machine reasoning. Accurify leverages case-based machine reasoning to find similar already-encountered cases from a security playbook and then reuses them to generate and adjust new testflows tailored to the attack variant in question. By analyzing historical threat data and incorporating real-time threat intelligence feeds, Accurify can generate new testflows for attack variants with high accuracy and precision, validated using real-world dataset. By automating the testflow generation, Accurify enhances the effectiveness of threat hunting and frees security professionals to focus on strategic aspects of cybersecurity operations.

The research reported in this article is supported by Ericsson Research and the Security Research Centre of Concordia University. This support stems from a collaborative partnership with the National Cybersecurity Consortium (NCC) under the Cyber Security Innovation Network (CSIN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    APT41: https://attack.mitre.org/groups/G0096/.

  2. 2.

    APT41: https://attack.mitre.org/groups/G0096/.

  3. 3.

    CTI KB: https://github.com/EricssonResearch/cti-kb.

  4. 4.

    Neo4j Graph Data Platform: www.neo4j.com.

  5. 5.

    MITRE ATT &CK CTI: www.github.com/mitre/cti/.

References

  1. A framework for cyber threat hunting. Technical report, Sqrrl Data, Inc. (2018)

    Google Scholar 

  2. Technical Requirements for the ArcSight Platform. Micro Focus ArcSight (2021)

    Google Scholar 

  3. APT41: A Dual Espionage and Cyber Crime Operation (2022)

    Google Scholar 

  4. ArcSight’s Latest and Greatest (2022)

    Google Scholar 

  5. Falcon Insight: Endpoint Detection and Response (EDR) (2022)

    Google Scholar 

  6. Alshamrani, A., et al.: A survey on advanced persistent threats: techniques, solutions, challenges, and research opportunities. IEEE COMST 21(2), 1851–1877 (2019)

    Google Scholar 

  7. Araujo, F., et al.: Evidential Cyber Threat Hunting. SDM (2021)

    Google Scholar 

  8. Church, K.W.: Word2Vec. Nat. Lang. Eng. 23(1), 155–162 (2017)

    Article  Google Scholar 

  9. Dehaerne, E., et al.: Code generation using machine learning: a systematic review. IEEE Access 10, 82434–82455 (2022)

    Article  Google Scholar 

  10. Di Tizio, G., et al.: Software updates strategies: a quantitative evaluation against advanced persistent threats. IEEE TSE 49(3), 1359–1373 (2023)

    Google Scholar 

  11. Fensel, D., et al.: Knowledge Graphs. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37439-6

    Book  Google Scholar 

  12. Fraser, G., et al.: Does automated unit test generation really help software testers? A controlled empirical study. ACM TOSEM 24(4), 1–49 (2015)

    Article  Google Scholar 

  13. Gao, X., et al.: A survey of graph edit distance. Pattern Anal. Appl. 13, 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  14. Grzesik, A., et al.: On tripartite common graphs. Combin. Probab. Comput. 31(5), 907–923 (2022)

    Article  MathSciNet  Google Scholar 

  15. Ho, G., et al.: Hopper: modeling and detecting lateral movement. In: USENIX Security (2021)

    Google Scholar 

  16. IACD: Integrated Adaptive Cyber Defense (IACD) Playbooks (2017)

    Google Scholar 

  17. Kaiser, F.K., et al.: Attack hypotheses generation based on threat intelligence knowledge graph. IEEE TDSC (2023)

    Google Scholar 

  18. Kryukov, R., et al.: Mapping the security events to the MITRE ATT & CK attack patterns to forecast attack propagation. In: ADIoT Workshop (2022)

    Google Scholar 

  19. McLachlan, G.J.: Mahalanobis distance. Resonance 4(6), 20–26 (1999)

    Article  Google Scholar 

  20. Milani Fard, A., et al.: Leveraging existing tests in automated test generation for web applications. In: ACM/IEEE ASE (2014)

    Google Scholar 

  21. Navarro, J., et al.: A systematic survey on multi-step attack detection. Comput. Secur. 76, 214–249 (2018)

    Article  Google Scholar 

  22. Nour, B., et al.: A survey on threat hunting in enterprise networks. IEEE COMST (2023)

    Google Scholar 

  23. Ontañón, S.: An overview of distance and similarity functions for structured data. Artif. Intell. Rev. 53(7), 5309–5351 (2020)

    Article  Google Scholar 

  24. Puzis, R., et al.: ATHAFI: Agile Threat Hunting And Forensic Investigation. arXiv preprint (2020)

    Google Scholar 

  25. Qamar, S., et al.: Data-driven analytics for cyber-threat intelligence and information sharing. Comput. Secur. 67, 35–58 (2017)

    Article  Google Scholar 

  26. Schlette, D., et al.: Do you play it by the books? A study on incident response playbooks and influencing factors. In: IEEE S &P (2023)

    Google Scholar 

  27. Team, G.C.A.: Threat Horizons - April 2023 Threat Horizons Report (2023)

    Google Scholar 

  28. Tomita, T., et al.: Template-based Monte-Carlo test generation for simulink models. In: CyPhy Workshop (2019)

    Google Scholar 

  29. Xia, P., et al.: Learning similarity with cosine similarity ensemble. Inf. Sci. 307, 39–52 (2015)

    Article  MathSciNet  Google Scholar 

  30. Yujian, L., et al.: A normalized Levenshtein distance metric. IEEE TPAMI 29(6), 1091–1095 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boubakr Nour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nour, B., Pourzandi, M., Kamran Qureshi, R., Debbabi, M. (2024). Accurify: Automated New Testflows Generation for Attack Variants in Threat Hunting. In: Mosbah, M., Sèdes, F., Tawbi, N., Ahmed, T., Boulahia-Cuppens, N., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2023. Lecture Notes in Computer Science, vol 14552. Springer, Cham. https://doi.org/10.1007/978-3-031-57540-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57540-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57539-6

  • Online ISBN: 978-3-031-57540-2

Publish with us

Policies and ethics