Abstract
SPHINCS+ is a signature scheme included in the first NIST post-quantum standard, that bases its security on the underlying hash primitive. As most of the runtime of SPHINCS+ is caused by the evaluation of several hash- and pseudo-random functions, instantiated via the hash primitive, offloading this computation to dedicated hardware accelerators is a natural step. In this work, we evaluate different architectures for hardware acceleration of such a hash primitive with respect to its use-case and evaluate them in the context of SPHINCS+. We attach hardware accelerators for different hash primitives (SHAKE256 and Ascon-Xof for both, full and round-reduced versions) to CPU interfaces having different transfer speeds. We show, that for most use-cases, data transfer determines the overall performance if accelerators are equipped with FIFOs and that reducing the number of rounds in the permutation does not necessarily lead to significant performance improvements when using hardware acceleration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
References
Amiet, D., Leuenberger, L., Curiger, A., Zbinden, P.: FPGA-based SPHINCS\({}^{\text{+}}\) implementations: mind the glitch. In: 23rd Euromicro Conference on Digital System Design, DSD 2020, Kranj, Slovenia, 26–28 August 2020, pp. 229–237. IEEE (2020). https://doi.org/10.1109/DSD51259.2020.00046
Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The SPHINCS+ signature framework. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. ACM (2019). https://doi.org/10.1145/3319535.3363229
Berthet, Q., Upegui, A., Gantel, L., Duc, A., Traverso, G.: An area-efficient SPHINCS\({}^{\text{+ }}\) post-quantum signature coprocessor. In: IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2021, Portland, OR, USA, 17–21 June 2021, pp. 180–187. IEEE (2021). https://doi.org/10.1109/IPDPSW52791.2021.00034
Bertoni, G., et al.: TurboSHAKE. IACR Cryptology ePrint Archive, p. 342 (2023). https://eprint.iacr.org/2023/342
Bos, J., et al.: CRYSTALS-KYBER: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 353–367. IEEE (2018)
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2 (2021). https://ascon.iaik.tugraz.at/specification.html
Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)
Fouque, P.A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over NTRU. Submission to the NIST’s post-quantum cryptography standardization process 36 (2018). https://falcon-sign.info/falcon.pdf
Fritzmann, T., Sigl, G., Sepúlveda, J.: RISQ-V: tightly coupled RISC-V accelerators for post-quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 239–280 (2020). https://doi.org/10.13154/tches.v2020.i4.239-280
Gautschi, M., et al.: Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices. IEEE Trans. Very Large Scale Integr. Syst. 25(10), 2700–2713 (2017). https://doi.org/10.1109/TVLSI.2017.2654506
Hülsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_10
Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum crypto library for the ARM Cortex-M4. As of commit 918f379. https://github.com/mupq/pqm4
Moody, D.: NIST PQC: looking into the future (2022). https://csrc.nist.gov/Presentations/2022/nist-pqc-looking-into-the-future
NIST: Status report on the third round of the NIST post-quantum cryptography stadardization process (2022). https://doi.org/10.6028/NIST.IR.8413-upd1
National Institute of Standards and Technology: SHA-3 standard: permutation-based hash and extendable-output functions. Technical report (2015). https://doi.org/10.6028/nist.fips.202
Steinegger, S., Primas, R.: A fast and compact RISC-V accelerator for ascon and friends. In: Liardet, P., Mentens, N. (eds.) CARDIS 2020. LNCS, vol. 12609, pp. 53–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68487-7_4
Turan, M.S.: Status report on the final round of the NIST lightweight cryptography standardization process (2023). https://doi.org/10.6028/nist.ir.8454
Wagner, A., Oberhansl, F., Schink, M.: To be, or not to be stateful: post-quantum secure boot using hash-based signatures. In: Chang, C., Rührmair, U., Mukhopadhyay, D., Forte, D. (eds.) Proceedings of the 2022 Workshop on Attacks and Solutions in Hardware Security, ASHES 2022, Los Angeles, CA, USA, 11 November 2022, pp. 85–94. ACM (2022). https://doi.org/10.1145/3560834.3563831
Acknowledgments
The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-life, project identification number: 16KISK002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Karl, P., Schupp, J., Sigl, G. (2024). The Impact of Hash Primitives and Communication Overhead for Hardware-Accelerated SPHINCS+. In: Wacquez, R., Homma, N. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2024. Lecture Notes in Computer Science, vol 14595. Springer, Cham. https://doi.org/10.1007/978-3-031-57543-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-57543-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57542-6
Online ISBN: 978-3-031-57543-3
eBook Packages: Computer ScienceComputer Science (R0)