Skip to main content

HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implementation of the MAYO Signature Scheme

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14595))

  • 495 Accesses

Abstract

MAYO is a topical modification of the established multivariate signature scheme UOV. Signer and Verifier locally enlarge the public key map, such that the dimension of the oil space and therefore, the parameter sizes in general, can be reduced. This significantly reduces the public key size while maintaining the appealing properties of UOV, like short signatures and fast verification. Therefore, MAYO is considered as an attractive candidate in the NIST call for additional digital signatures and might be an adequate solution for real-world deployment in resource-constrained devices.

When emerging to hardware implementation of multivariate schemes and specifically MAYO, different challenges are faced, namely resource utilization, which scales up with higher parameter sets. To accommodate this, we introduce a configurable hardware implementation designed for integration across various FPGA architectures. Our approach features adaptable configurations aligned with NIST-defined security levels and incorporates resources optimization modules. Our implementation is specifically tested on the Zynq ZedBoard with the Zynq-7020 SoC, with performance evaluations and comparisons made against previous hardware implementations of multivariate schemes.

Furthermore, we conducted a security analysis of the MAYO implementation highlighting potential physical attacks and implemented lightweight countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note here that we refer to the first implementation of MAYO scheme by Ward Beullens in [Beu22b].

References

  1. Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Separating oil and vinegar with a single trace: side-channel assisted Kipnis-Shamir attack on UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst. 221–245 (2023)

    Google Scholar 

  2. Aulbach, T., Kovats, T., Krämer, J., Marzougui, S.: Recovering rainbow’s secret key with a first-order fault attack. In: Batina, L., Daemen, J. (eds.) AFRICACRYPT 2022. LNCS, vol. 13503, pp. 348–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17433-9_15

    Chapter  Google Scholar 

  3. ARM. Armv7-m architecture reference manual. https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set

  4. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: MAYO-algorithm specifications. MAYO team (2023). https://pqmayo.org/assets/specs/mayo.pdf

  5. Beullens, W., et al.: Modern Parameters and Implementations. Cryptology ePrint Archive (2023)

    Google Scholar 

  6. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Keccak open-source hardware implementation (2022). https://keccak.team/index.html

  7. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_13

    Chapter  Google Scholar 

  8. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_16

    Chapter  Google Scholar 

  9. Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar maps. In: Altawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_17

    Chapter  Google Scholar 

  10. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

    Chapter  Google Scholar 

  11. Ferozpuri, A., Gaj, K.: High-speed FPGA implementation of the NIST round 1 rainbow signature scheme. In: 2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–8 (2018)

    Google Scholar 

  12. Hirner, F., Streibl, M., Mert, A.C., Roy, S.S.: A hardware implementation of mayo signature scheme. IACR Cryptology ePrint Archive 2023:1267 (2023)

    Google Scholar 

  13. Yi, H., Nie, Z.: High-speed hardware architecture for implementations of multivariate signature generations on FPGAs. EURASIP J. Wirel. Commun. Netw. 1687–1499 (2018)

    Google Scholar 

  14. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

    Chapter  Google Scholar 

  15. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (2006). https://doi.org/10.1007/BFb0055733

    Chapter  Google Scholar 

  16. NIST. NIST post-quantum cryptography standardization (2023). https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline

  17. NIST. NIST post-quantum cryptography standardization: evaluation criteria (2023). https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

  18. NIST. SHA-3 standard: permutation-based hash and extendable-output functions (2023). https://csrc.nist.gov/publications/detail/fips/202/final

  19. PQDB post-quantum data base (2023). https://www.pqdb.info/

  20. Rupp, A., Eisenbarth, T., Bogdanov, A., Grieb, O.: Hardware SLE solvers: efficient building blocks for cryptographic and cryptanalytic applications. Integration 44(4), 290–304 (2011)

    Article  Google Scholar 

  21. Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware implementation of rainbow signature on FPGAs. In: Yang, B.Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 228–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_15

    Chapter  Google Scholar 

  22. AMD Xilinx. Zynq-7000 SoCs with Hardware and Software Programmability (2023). https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

  23. Xing, Y., Li, S.: A compact hardware implementation of CCA-secure key exchange mechanism CRYSTALS-KYBER on FPGA. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 328–356 (2021)

    Google Scholar 

  24. Zhao, C., et al.: A compact and high-performance hardware architecture for CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 270–295 (2021)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the programme of the project Full Lifecycle Post-Quantum PKI - FLOQI (ID 16KIS1074). Furthermore, this work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number 505500359. Moreover, we would like to thank Amir Moradi for his valuable input which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oussama Sayari , Soundes Marzougui or Thomas Aulbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sayari, O., Marzougui, S., Aulbach, T., Krämer, J., Seifert, JP. (2024). HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implementation of the MAYO Signature Scheme. In: Wacquez, R., Homma, N. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2024. Lecture Notes in Computer Science, vol 14595. Springer, Cham. https://doi.org/10.1007/978-3-031-57543-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57543-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57542-6

  • Online ISBN: 978-3-031-57543-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics