Abstract
MAYO is a topical modification of the established multivariate signature scheme UOV. Signer and Verifier locally enlarge the public key map, such that the dimension of the oil space and therefore, the parameter sizes in general, can be reduced. This significantly reduces the public key size while maintaining the appealing properties of UOV, like short signatures and fast verification. Therefore, MAYO is considered as an attractive candidate in the NIST call for additional digital signatures and might be an adequate solution for real-world deployment in resource-constrained devices.
When emerging to hardware implementation of multivariate schemes and specifically MAYO, different challenges are faced, namely resource utilization, which scales up with higher parameter sets. To accommodate this, we introduce a configurable hardware implementation designed for integration across various FPGA architectures. Our approach features adaptable configurations aligned with NIST-defined security levels and incorporates resources optimization modules. Our implementation is specifically tested on the Zynq ZedBoard with the Zynq-7020 SoC, with performance evaluations and comparisons made against previous hardware implementations of multivariate schemes.
Furthermore, we conducted a security analysis of the MAYO implementation highlighting potential physical attacks and implemented lightweight countermeasures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note here that we refer to the first implementation of MAYO scheme by Ward Beullens in [Beu22b].
References
Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Separating oil and vinegar with a single trace: side-channel assisted Kipnis-Shamir attack on UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst. 221–245 (2023)
Aulbach, T., Kovats, T., Krämer, J., Marzougui, S.: Recovering rainbow’s secret key with a first-order fault attack. In: Batina, L., Daemen, J. (eds.) AFRICACRYPT 2022. LNCS, vol. 13503, pp. 348–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17433-9_15
ARM. Armv7-m architecture reference manual. https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set
Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: MAYO-algorithm specifications. MAYO team (2023). https://pqmayo.org/assets/specs/mayo.pdf
Beullens, W., et al.: Modern Parameters and Implementations. Cryptology ePrint Archive (2023)
Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Keccak open-source hardware implementation (2022). https://keccak.team/index.html
Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_13
Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_16
Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar maps. In: Altawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_17
Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12
Ferozpuri, A., Gaj, K.: High-speed FPGA implementation of the NIST round 1 rainbow signature scheme. In: 2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–8 (2018)
Hirner, F., Streibl, M., Mert, A.C., Roy, S.S.: A hardware implementation of mayo signature scheme. IACR Cryptology ePrint Archive 2023:1267 (2023)
Yi, H., Nie, Z.: High-speed hardware architecture for implementations of multivariate signature generations on FPGAs. EURASIP J. Wirel. Commun. Netw. 1687–1499 (2018)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15
Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (2006). https://doi.org/10.1007/BFb0055733
NIST. NIST post-quantum cryptography standardization (2023). https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
NIST. NIST post-quantum cryptography standardization: evaluation criteria (2023). https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
NIST. SHA-3 standard: permutation-based hash and extendable-output functions (2023). https://csrc.nist.gov/publications/detail/fips/202/final
PQDB post-quantum data base (2023). https://www.pqdb.info/
Rupp, A., Eisenbarth, T., Bogdanov, A., Grieb, O.: Hardware SLE solvers: efficient building blocks for cryptographic and cryptanalytic applications. Integration 44(4), 290–304 (2011)
Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware implementation of rainbow signature on FPGAs. In: Yang, B.Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 228–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_15
AMD Xilinx. Zynq-7000 SoCs with Hardware and Software Programmability (2023). https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
Xing, Y., Li, S.: A compact hardware implementation of CCA-secure key exchange mechanism CRYSTALS-KYBER on FPGA. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 328–356 (2021)
Zhao, C., et al.: A compact and high-performance hardware architecture for CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 270–295 (2021)
Acknowledgments
The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the programme of the project Full Lifecycle Post-Quantum PKI - FLOQI (ID 16KIS1074). Furthermore, this work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number 505500359. Moreover, we would like to thank Amir Moradi for his valuable input which greatly improved the paper.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sayari, O., Marzougui, S., Aulbach, T., Krämer, J., Seifert, JP. (2024). HaMAYO: A Fault-Tolerant Reconfigurable Hardware Implementation of the MAYO Signature Scheme. In: Wacquez, R., Homma, N. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2024. Lecture Notes in Computer Science, vol 14595. Springer, Cham. https://doi.org/10.1007/978-3-031-57543-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-57543-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57542-6
Online ISBN: 978-3-031-57543-3
eBook Packages: Computer ScienceComputer Science (R0)