Skip to main content

Machine Learning Based Stroke Segmentation and Classification from CT-Scan: A Survey

  • Conference paper
  • First Online:
Pan-African Conference on Artificial Intelligence (PanAfriConAI 2023)

Abstract

Brain stroke is a life-threatening condition that requires early diagnosis to reduce permanent disability and death. The Computed Tomography (CT) scan is used as a gold standard technique to diagnose brain stroke. However, immediate and accurate interpretation of the images is challenging, even for skilled neuroradiologists. Therefore, researchers have focused on developing machine learning (ML) and deep learning (DL) based systems that are used to detect brain stroke from CT scan images. The main aim of this study is to review the state-of-the-art approaches that are used to perform segmentation and classification tasks, the efficiency of existing ML techniques in stroke diagnosis, the availability of public brain stroke CT scan image datasets, noises that affect brain CT scan images and denoising techniques, and limitations and challenges of ML techniques in segmentation and classification of brain stroke. A total of 33 papers were identified using inclusion and exclusion criteria from the results of 7 databases (Science-Direct, MDPI, Google Scholar, IEEE, Wiley online library, Springer Link, and Dove Press) from 2018 to June 2023. Where most of the studies utilized DL-based segmentation and classification techniques. Among the various segmentation techniques used, U-net and U-net-based models are the dominantly used techniques that exhibit superior performance over other segmentation models. In contrast, the modified 3D U-Net with the integration of the squeeze and excitation block has shown the highest Dice score. Similarly, Convolutional neural networks (CNN) based architectures were found to be dominantly used for brain stroke image classification. Furthermore, in this review, 5 publicly available brain stroke CT scan image datasets were found. 3 of them have masks and can be used to train segmentation models. However, due to the limitation in the subtypes of the images and the number of data that are available in the repositories to train ML models, most of the reviewed studies have used local data repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isles challenge 2018 ischemic stroke lesion segmentation. ISLES2018 (2018). http://www.isles-challenge.org/. Accessed 24 Feb 2023

  2. Abramova, V., et al.: Hemorrhagic stroke lesion segmentation using a 3d u-net with squeeze-and-excitation blocks. Comput. Med. Imaging Graph. 90, 101908 (2021)

    Article  Google Scholar 

  3. Acharya, U.R., et al.: Automatic detection of ischemic stroke using higher order spectra features in brain MRI images. Cogn. Syst. Res. 58, 134–142 (2019)

    Article  Google Scholar 

  4. Akilan, T., Wu, Q.J., Safaei, A., Huo, J., Yang, Y.: A 3d CNN-LSTM-based image-to-image foreground segmentation. IEEE Trans. Intell. Transp. Syst. 21(3), 959–971 (2019)

    Article  Google Scholar 

  5. Alawad, D.M., Mishra, A., Hoque, M.T.: AIBH: accurate identification of brain hemorrhage using genetic algorithm based feature selection and stacking. Mach. Learn. Knowl. Extract. 2(2), 56–77 (2020)

    Article  Google Scholar 

  6. Alexander, A., Jiang, A., Ferreira, C., Zurkiya, D.: An intelligent future for medical imaging: a market outlook on artificial intelligence for medical imaging. J. Am. Coll. Radiol. 17(1), 165–170 (2020)

    Article  Google Scholar 

  7. Ali, N.H., Abdullah, A.R., Saad, N.M., Muda, A.S., Sutikno, T., Jopri, M.H.: Brain stroke computed tomography images analysis using image processing: A review. Int. J. Artif. Intell. ISSN 2252(8938), 1049 (2021)

    Google Scholar 

  8. Allison, M.: Ct image of hemorrhagic stroke (2019). https://www.accessmedicinenetwork.com/posts/50918-ct-image-of-hemorrhagic-stroke/

  9. Alzain, A.F., et al.: Common computed tomography artifact: source and avoidance. Egypt. J. Radiol. Nucl. Med. 52(1), 151 (2021)

    Article  Google Scholar 

  10. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)

    Article  Google Scholar 

  11. Asgari Taghanaki, S., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54, 137–178 (2021)

    Article  Google Scholar 

  12. Asokan, A., Anitha, J., Ciobanu, M., Gabor, A., Naaji, A., Hemanth, D.J.: Image processing techniques for analysis of satellite images for historical maps classification-an overview. Appl. Sci. 10(12), 4207 (2020)

    Article  Google Scholar 

  13. Audebert, N., Le Saux, B., Lefèvre, S.: Segment-before-detect: vehicle detection and classification through semantic segmentation of aerial images. Remote Sens. 9(4), 368 (2017)

    Article  Google Scholar 

  14. Ayano, Y.M., Schwenker, F., Dufera, B.D., Debelee, T.G.: Interpretable machine learning techniques in ECG-based heart disease classification: a systematic review. Diagnostics 13(1), 111 (2023)

    Article  Google Scholar 

  15. Aydin, O.U., et al.: On the usage of average hausdorff distance for segmentation performance assessment: hidden error when used for ranking. Eur. Radiol. Exp. 5, 1–7 (2021)

    Article  Google Scholar 

  16. Babutain, K., Hussain, M., Aboalsamh, H., Al-Hameed, M.: Deep learning-enabled detection of acute ischemic stroke using brain computed tomography images. Int. J. Adv. Comput. Sci. Appl. 12(12), 386–397 (2021)

    Google Scholar 

  17. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  18. Badriyah, T., Sakinah, N., Syarif, I., Syarif, D.R.: Segmentation stroke objects based on ct scan image using thresholding method. In: 2019 First International Conference on Smart Technology & Urban Development (STUD), pp. 1–6. IEEE (2019)

    Google Scholar 

  19. Badriyah, T., Santoso, D.B., Syarif, I., Syarif, D.R.: Improving stroke diagnosis accuracy using hyperparameter optimized deep learning. Int. J. Adv. Intell. Inf. 5(3), 256 (2019)

    Google Scholar 

  20. Bagasta, A., Rustam, Z., Pandelaki, J., Nugroho, W.: Comparison of cubic SVM with gaussian SVM: classification of infarction for detecting ischemic stroke. IOP Conf. Ser. Mater. Sci. Eng. 546, 05201 (2019)

    Article  Google Scholar 

  21. Barros, R.S., et al.: Automated segmentation of subarachnoid hemorrhages with convolutional neural networks. Inf. Med. Unlocked 19, 100321 (2020)

    Article  Google Scholar 

  22. van Beers, F., Lindström, A., Okafor, E., Wiering, M.A.: Deep neural networks with intersection over union loss for binary image segmentation. In: ICPRAM, pp. 438–445 (2019)

    Google Scholar 

  23. Boas, F.E., Fleischmann, D., et al.: Ct artifacts: causes and reduction techniques. Imaging Med. 4(2), 229–240 (2012)

    Article  Google Scholar 

  24. Bzdok, D., Krzywinski, M., Altman, N.: Machine learning: supervised methods. Nat. Methods 15(1), 5 (2018)

    Article  Google Scholar 

  25. Cao, Z., et al.: Deep learning derived automated aspects on non-contrast ct scans of acute ischemic stroke patients. Technical report, Wiley Online Library (2022)

    Google Scholar 

  26. Centers for disease control and prevention (2020). https://www.cdc.gov/stroke/about.htm. Accessed 10 Jan 2023

  27. Chan, H.P., Samala, R.K., Hadjiiski, L.M., Zhou, C.: Deep learning in medical image analysis, pp. 3–21 (2020)

    Google Scholar 

  28. Chen, W., et al.: Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study. Insights Imaging 13(1), 1–12 (2022)

    Article  Google Scholar 

  29. Chiang, P.L., et al.: Deep learning-based automatic detection of aspects in acute ischemic stroke: improving stroke assessment on CT scans. J. Clin. Med. 11(17), 5159 (2022)

    Article  Google Scholar 

  30. Clerigues, A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., Lladó, X.: Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks. Comput. Biol. Med. 115, 103487 (2019)

    Article  Google Scholar 

  31. Convolutional neural network (2017). https://www.engati.com/glossary/convolutional-neural-network. Accessed 30 June 2023

  32. Cortés-Ferre, L., Gutiérrez-Naranjo, M.A., Egea-Guerrero, J.J., Pérez-Sánchez, S., Balcerzyk, M.: Deep learning applied to intracranial hemorrhage detection. J. Imaging 9(2), 37 (2023)

    Article  Google Scholar 

  33. Cq500 (2018). http://headctstudy.qure.ai/dataset. Accessed 3 Apr 2023

  34. Cui, L., et al.: Deep learning in ischemic stroke imaging analysis: a comprehensive review. BioMed Res. Int. 2022 (2022)

    Google Scholar 

  35. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    Chapter  Google Scholar 

  36. Diwakar, M., Kumar, M.: A review on CT image noise and its denoising. Biomed. Signal Process. Control 42, 73–88 (2018)

    Article  Google Scholar 

  37. Dogra, A., Goyal, B., Agrawal, S., Vig, R.: Filtering techniques eliminate gaussian image noise (2023). https://www.vision-systems.com/print/content/14174546

  38. Donkor, E.S.: Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treatment (2018). https://doi.org/10.1155/2018/3238165

  39. Dourado, C.M., Jr., et al.: Deep learning iot system for online stroke detection in skull computed tomography images. Comput. Netw. 152, 25–39 (2019)

    Article  Google Scholar 

  40. Dovepress. https://www.dovepress.com/. Accessed date 23 Nov 2022

  41. Du, G., Cao, X., Liang, J., Chen, X., Zhan, Y.: Medical image segmentation based on u-net: a review. J. Imaging Sci. Technol. 64, 1–12 (2020)

    Article  Google Scholar 

  42. Faghani, S., et al.: Mitigating bias in radiology machine learning: 3. performance metrics. Radiol. Artif. Intell. 4(5), e220061 (2022)

    Google Scholar 

  43. Feature extraction (2020). https://deepai.org/machine-learning-glossary-and-terms/feature-extraction. Accessed 27 Feb 2023

  44. Feigin, V.L., et al.: World stroke organization (WSO): global stroke fact sheet 2022. Int. J. Stroke 17(1), 18–29 (2022)

    Article  Google Scholar 

  45. Fu, G.S., Levin-Schwartz, Y., Lin, Q.H., Zhang, D.: Machine learning for medical imaging (2019)

    Google Scholar 

  46. Gautam, A., Raman, B.: Local gradient of gradient pattern: a robust image descriptor for the classification of brain strokes from computed tomography images. Pattern Anal. Appl. 23, 797–817 (2020)

    Article  Google Scholar 

  47. Gedraite, E.S., Hadad, M.: Investigation on the effect of a gaussian blur in image filtering and segmentation. In: Proceedings ELMAR-2011, pp. 393–396. IEEE (2011)

    Google Scholar 

  48. Ghojogh, B., et al.: Feature selection and feature extraction in pattern analysis: a literature review. arXiv preprint arXiv:1905.02845 (2019)

  49. Goyal, B., Agrawal, S., Sohi, B.: Noise issues prevailing in various types of medical images. Biomed. Pharmacol. J. 11(3), 1227 (2018)

    Article  Google Scholar 

  50. Grandini, M., Bagli, E., Visani, G.: Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756 (2020)

  51. Google scholar. https://scholar.google.com/. Accessed 23 Nov 2022

  52. Guo, D., et al.: Simultaneous classification and segmentation of intracranial hemorrhage using a fully convolutional neural network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 118–121. IEEE (2020)

    Google Scholar 

  53. Hadid, A.: The local binary pattern approach and its applications to face analysis. In: 2008 First Workshops on Image Processing Theory, Tools and Applications, pp. 1–9 (2008). https://doi.org/10.1109/IPTA.2008.4743795

  54. Hafiz, A.M., Bhat, G.M.: A survey on instance segmentation: state of the art. Int. J. Multimedia Inf. Retr. 9(3), 171–189 (2020)

    Article  Google Scholar 

  55. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582–596 (2019)

    Article  Google Scholar 

  56. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainability of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 9(4), e1312 (2019)

    Article  Google Scholar 

  57. Hssayeni, M.: Computed tomography images for intracranial hemorrhage detection and segmentation (2018). https://physionet.org/content/ct-ich/1.0.0/. https://doi.org/10.13026/w8q8-ky94

  58. Hssayeni, M.D., Croock, M.S., Salman, A.D., Al-khafaji, H.F., Yahya, Z.A., Ghoraani, B.: Intracranial hemorrhage segmentation using a deep convolutional model. Data 5(1), 14 (2020)

    Article  Google Scholar 

  59. Hu, K., et al.: Automatic segmentation of intracerebral hemorrhage in ct images using encoder-decoder convolutional neural network. Inf. Process. Manag. 57(6), 102352 (2020)

    Article  Google Scholar 

  60. Hussain, E., Hasan, M., Hassan, S.Z., Azmi, T.H., Rahman, M.A., Parvez, M.Z.: Deep learning based binary classification for alzheimer’s disease detection using brain mri images. In: 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1115–1120. IEEE (2020)

    Google Scholar 

  61. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  62. IEEE (1884). https://ieeexplore.ieee.org/Xplore/home.jsp. Accessed 23 Nov 2022

  63. Inamdar, M.A., et al.: A review on computer aided diagnosis of acute brain stroke. Sensors 21(24), 8507 (2021)

    Article  Google Scholar 

  64. Jain, U., et al.: Cubic SVM classifier-based feature extraction and emotion detection from speech signals. In: 2018 International Conference on Sensor Networks and Signal Processing (SNSP), pp. 386–391 (2018)

    Google Scholar 

  65. Johnson, W., Onuma, O., Owolabi, M., Sachdev, S.: Stroke: a global response is needed. Bull. World Health Organ. 94(9), 634 (2016)

    Article  Google Scholar 

  66. Jung, S.M., Whangbo, T.K.: A deep learning system for diagnosing ischemic stroke by applying adaptive transfer learning. J. Internet Technol. 21(7), 1957–1968 (2020)

    Google Scholar 

  67. Kaya, B., Önal, M.: A CNN transfer learning-based approach for segmentation and classification of brain stroke from noncontrast ct images. Int. J. Imaging Syst. Technol. 33, 1335–1352 (2023)

    Article  Google Scholar 

  68. Kleindorfer, D.O., et al.: 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the american heart association/american stroke association. Stroke 52(7), e364–e467 (2021)

    Article  Google Scholar 

  69. Ko, H., Chung, H., Lee, H., Lee, J.: Feasible study on intracranial hemorrhage detection and classification using a cnn-lstm network. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1290–1293. IEEE (2020)

    Google Scholar 

  70. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  71. Kumar, M., Diwakar, M.: A new exponentially directional weighted function based ct image denoising using total variation. J. King Saud Univ.-Comput. Inf. Sci. 31(1), 113–124 (2019)

    Google Scholar 

  72. Lai, Z., Deng, H.: Medical image classification based on deep features extracted by deep model. Comput. Intell. Neurosci. 2018 (2018). https://doi.org/10.1155/2018/2061516

  73. Lan, S., et al.: Discobox: weakly supervised instance segmentation and semantic correspondence from box supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3406–3416 (2021)

    Google Scholar 

  74. Lee, H., et al.: Machine learning approach to identify stroke within 4.5 hours. Stroke 51(3), 860–866 (2020)

    Google Scholar 

  75. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Article  Google Scholar 

  76. Li, L., et al.: Deep learning for hemorrhagic lesion detection and segmentation on brain ct images. IEEE J. Biomed. Health Inf. 25(5), 1646–1659 (2020)

    Article  Google Scholar 

  77. Li, S., Zheng, J., Li, D.: Precise segmentation of non-enhanced computed tomography in patients with ischemic stroke based on multi-scale u-net deep network model. Comput. Methods Programs Biomed. 208, 106278 (2021)

    Article  Google Scholar 

  78. Li, X.T., Huang, R.Y.: Standardization of imaging methods for machine learning in neuro-oncology. Neuro-oncol. Adv. 2(Supplement_4), iv49–iv55 (2020)

    Google Scholar 

  79. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33, 6999–7019 (2021)

    Article  MathSciNet  Google Scholar 

  80. Liang, K., et al.: Symmetry-enhanced attention network for acute ischemic infarct segmentation with non-contrast CT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 432–441. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_41

    Chapter  Google Scholar 

  81. Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)

    Article  Google Scholar 

  82. Mahesh, B.: Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR) 9, 381–386 (2020)

    Google Scholar 

  83. Manson, E., Ampoh, V.A., Fiagbedzi, E., Amuasi, J., Flether, J., Schandorf, C.: Image noise in radiography and tomography: causes, effects and reduction techniques. Curr. Trends Clin. Med. Imaging 2(5), 555620 (2019)

    Google Scholar 

  84. Marbun, J., Andayani, U., et al.: Classification of stroke disease using convolutional neural network. In: Journal of Physics: Conference Series, vol. 978, p. 012092. IOP Publishing (2018)

    Google Scholar 

  85. Marshall, E.L., Ginat, D.T., Sammet, S.: Computed tomography imaging artifacts in the head and neck region: pitfalls and solutions. Neuroimaging Clin. N. Am. 32(2), 271–277 (2022)

    Article  Google Scholar 

  86. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3523–3542 (2021)

    Google Scholar 

  87. Mo, Y., Wu, Y., Yang, X., Liu, F., Liao, Y.: Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 493, 626–646 (2022)

    Article  Google Scholar 

  88. Moorthy, J., Gandhi, U.D.: A survey on medical image segmentation based on deep learning techniques. Big Data Cogn. Comput. 6(4), 117 (2022)

    Article  Google Scholar 

  89. Müller, D., Hartmann, D., Meyer, P., Auer, F., Soto-Rey, I., Kramer, F.: Miseval: a metric library for medical image segmentation evaluation. In: Challenges of Trustable AI and Added-Value on Health. Proceedings of MIE (2022)

    Google Scholar 

  90. Müller, D., Soto-Rey, I., Kramer, F.: Towards a guideline for evaluation metrics in medical image segmentation. BMC. Res. Notes 15(1), 1–8 (2022)

    Article  Google Scholar 

  91. Mushtaq, M.F., et al.: Bhcnet: neural network-based brain hemorrhage classification using head ct scan. IEEE Access 9, 113901–113916 (2021)

    Article  Google Scholar 

  92. Nodirov, J., Abdusalomov, A.B., Whangbo, T.K.: Attention 3D u-net with multiple skip connections for segmentation of brain tumor images. Sensors 22(17), 6501 (2022)

    Article  Google Scholar 

  93. Novozámskỳ, A., et al.: Automated object labeling for cnn-based image segmentation. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2036–2040. IEEE (2020)

    Google Scholar 

  94. Nugroho, A.K., Putranto, T.A., Purnama, I.K.E., Purnomo, M.H.: Multi segmentation method for hemorraghic detection. In: 2018 International Conference on Intelligent Autonomous Systems (ICoIAS), pp. 62–66. IEEE (2018)

    Google Scholar 

  95. Nur, H.A., Abdul, R.A., Norhashimah, M.S., Ahmad, S.M., Tole, S., Mohd, H.J.: Brain stroke computed tomography images analysis using image processing: a review. IAES Int. J. Artif. Intell. (IJ-AI) 10(4), 1048–1059 (2021). https://doi.org/10.11591/ijai.v10.i4.pp1048-1059

  96. Ogun, S., Oluwole, O., Ogunseyinde, A., Fatade, B., Odusote, K.: Misdiagnosis of stroke-a computerized tomography scan study. West Afr. J. Med. 19(1), 19–22 (2000)

    Google Scholar 

  97. Omarov, B., et al.: Modified unet model for brain stroke lesion segmentation on computed tomography images. Comput. Mater. Continua 71(3), 4701–4717 (2022)

    Article  Google Scholar 

  98. Orenes, Y., Rabasa, A., Rodriguez-Sala, J.J., Sanchez-Soriano, J.: Benchmarking analysis of the accuracy of classification methods related to entropy. Entropy 23(7), 850 (2021)

    Article  MathSciNet  Google Scholar 

  99. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  100. Ou, Y., et al.: Bbox-guided segmentor: leveraging expert knowledge for accurate stroke lesion segmentation using weakly supervised bounding box prior. Comput. Med. Imaging Graph. 107, 102236 (2023)

    Article  Google Scholar 

  101. Ozaltin, O., Coskun, O., Yeniay, O., Subasi, A.: A deep learning approach for detecting stroke from brain ct images using oznet. Bioengineering 9(12), 783 (2022)

    Article  Google Scholar 

  102. Ozaltin, O., Coskun, O., Yeniay, O., Subasi, A.: Classification of brain hemorrhage computed tomography images using oznet hybrid algorithm. Int. J. Imaging Syst. Technol. 33(1), 69–91 (2023)

    Article  Google Scholar 

  103. Öztürk, Ş, Akdemir, B.: Application of feature extraction and classification methods for histopathological image using glcm, lbp, lbglcm, glrlm and sfta. Procedia Comput. Sci. 132, 40–46 (2018)

    Article  Google Scholar 

  104. Patil, S., Rossi, R., Jabrah, D., Doyle, K.: Detection, diagnosis and treatment of acute ischemic stroke: current and future perspectives. Front. Med. Technol. 4, 748949 (2022)

    Article  Google Scholar 

  105. Peixoto, S.A., Rebouças Filho, P.P.: Neurologist-level classification of stroke using a structural co-occurrence matrix based on the frequency domain. Comput. Electr. Eng. 71, 398–407 (2018)

    Article  Google Scholar 

  106. Phaphuangwittayakul, A., Guo, Y., Ying, F., Dawod, A.Y., Angkurawaranon, S., Angkurawaranon, C.: An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head CT images for traumatic brain injury. Appl. Intell. 1–19 (2022)

    Google Scholar 

  107. Platscher, M., Zopes, J., Federau, C.: Image translation for medical image generation: ischemic stroke lesion segmentation. Biomed. Signal Process. Control 72, 103283 (2022)

    Article  Google Scholar 

  108. Prajapati, R., Kwon, G.R.: Sip-unet: sequential inputs parallel unet architecture for segmentation of brain tissues from magnetic resonance images. Mathematics 10(15), 2755 (2022)

    Article  Google Scholar 

  109. Mdpi (1996). https://www.mdpi.com/. Accessed 23 Nov 2022

  110. Fuzzy C-Means-Grey Wolf Optimization for classification of Stroke (2021)

    Google Scholar 

  111. Sruthi, E.R.: Understand random forest algorithms with examples (2023). https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/

  112. Radiopaedia (2005). https://radiopaedia.org/. Accessed 24 Mar 2023

  113. Classification: Roc curve and auc (2020). https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc. Accessed 24 Feb 2023

  114. Radovic, M., Ghalwash, M., Filipovic, N., Obradovic, Z.: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinf. 18(1), 1–14 (2017)

    Article  Google Scholar 

  115. Raghavendra, U., et al.: Novel and accurate non-linear index for the automated detection of haemorrhagic brain stroke using ct images. Complex Intell. Syst. 7, 929–940 (2021)

    Article  Google Scholar 

  116. Rajini, N.H., Bhavani, R.: Computer aided detection of ischemic stroke using segmentation and texture features. Measurement 46(6), 1865–1874 (2013)

    Article  Google Scholar 

  117. Ramalho, G.L.B., Ferreira, D.S., Rebouças Filho, P.P., de Medeiros, F.N.S.: Rotation-invariant feature extraction using a structural co-occurrence matrix. Measurement 94, 406–415 (2016)

    Google Scholar 

  118. Ramesh, K., Kumar, G.K., Swapna, K., Datta, D., Rajest, S.S.: A review of medical image segmentation algorithms. EAI Endorsed Trans. Perv. Health Technol. 7(27), e6–e6 (2021)

    Google Scholar 

  119. Roc curve (2020). https://www.researchgate.net/figure/ROC-curves-and-area-under-curve-AUC_fig2_351506473. Accessed 30 June 2023

  120. Reidler, P., et al.: Performance of automated attenuation measurements at identifying large vessel occlusion stroke on ct angiography. Clin. Neuroradiol. 31, 763–772 (2021)

    Article  Google Scholar 

  121. RSNA: Rsna intracranial hemorrhage detection (2019). https://www.kaggle.com/competitions/rsna-intracranial-hemorrhage-detection/data

  122. Saragih, G.S., Rustam, Z., Aldila, D., Hidayat, R., Yunus, R.E., Pandelaki, J.: Ischemic stroke classification using random forests based on feature extraction of convolutional neural networks. Int. J. Adv. Sci. Eng. Inf. Technol. 10(5), 2177 (2020)

    Article  Google Scholar 

  123. Science direct. https://www.sciencedirect.com/. Accessed 23 Nov 2022

  124. Seo, H., et al.: Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med. Phys. 47(5), e148–e167 (2020)

    Article  Google Scholar 

  125. Shamir, R.R., Duchin, Y., Kim, J., Sapiro, G., Harel, N.: Continuous dice coefficient: a method for evaluating probabilistic segmentations. arXiv preprint arXiv:1906.11031 (2019)

  126. Shi, T., Jiang, H., Zheng, B.: C2 ma-net: cross-modal cross-attention network for acute ischemic stroke lesion segmentation based on ct perfusion scans. IEEE Trans. Biomed. Eng. 69(1), 108–118 (2021)

    Article  Google Scholar 

  127. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021)

    Article  Google Scholar 

  128. Sirsat, M., Fermé, E., Câmara, J.: Machine learning for brain stroke: a review. J. Stroke Cerebrovasc. Dis. 29 (2020). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105162

  129. Sirsat, M.S., Fermé, E., Câmara, J.: Machine learning for brain stroke: a review. J. Stroke Cerebrovasc. Dis. 29(10), 105162 (2020)

    Article  Google Scholar 

  130. Springer. https://www.link.springer.com/. Accessed 12 Mar 2022

  131. Soltanpour, M., Greiner, R., Boulanger, P., Buck, B.: Improvement of automatic ischemic stroke lesion segmentation in ct perfusion maps using a learned deep neural network. Comput. Biol. Med. 137, 104849 (2021)

    Article  Google Scholar 

  132. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

  133. Su, R., Zhang, D., Liu, J., Cheng, C.: Msu-net: multi-scale u-net for 2d medical image segmentation. Front. Genet. 12, 639930 (2021)

    Article  Google Scholar 

  134. Sumijan, S., Yuhandri, Y., Boy, W.: Hybrid thresholding method in detection and extraction of brain hemorrhage on the ct-scan image. J. Comput. Sci. Inf. Technol. 7–14 (2021)

    Google Scholar 

  135. Suri, J.S., et al.: Unet deep learning architecture for segmentation of vascular and non-vascular images: a microscopic look at unet components buffered with pruning, explainable artificial intelligence, and bias. IEEE Access 11, 595–645 (2022)

    Article  Google Scholar 

  136. Taha, A.A., Hanbury, A.: An efficient algorithm for calculating the exact hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2153–2163 (2015)

    Article  Google Scholar 

  137. Badriyah, T., Sakinah, N., Syarif, I., Syarif, D.R.: Machine Learning Algorithm for Stoke Disease Classification (2020)

    Google Scholar 

  138. Tharek, A., Muda, A.S., Hudi, A.B., Hudin, A.B.: Intracranial hemorrhage detection in ct scan using deep learning. Asian J. Med. Technol. 2(1), 1–18 (2022)

    Article  Google Scholar 

  139. Tomasetti, L., Hollesli, L.J., Engan, K., Kurz, K.D., Kurz, M.W., Khanmohammadi, M.: Machine learning algorithms versus thresholding to segment ischemic regions in patients with acute ischemic stroke. IEEE J. Biomed. Health Inf. 26(2), 660–672 (2021)

    Article  Google Scholar 

  140. Tuladhar, A., Schimert, S., Rajashekar, D., Kniep, H.C., Fiehler, J., Forkert, N.D.: Automatic segmentation of stroke lesions in non-contrast computed tomography datasets with convolutional neural networks. IEEE Access 8, 94871–94879 (2020)

    Article  Google Scholar 

  141. Tursynova, A., Omarov, B.: 3D u-net for brain stroke lesion segmentation on isles 2018 dataset. In: 2021 16th International Conference on Electronics Computer and Computation (ICECCO), pp. 1–4. IEEE (2021)

    Google Scholar 

  142. Unnithan, A.K.A., Das, J.M.: Hemorrhagic stroke. StatPearls (2022)

    Google Scholar 

  143. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)

    Article  MathSciNet  Google Scholar 

  144. Veikutis, V., et al.: Artifacts in computer tomography imaging: how it can really affect diagnostic image quality and confuse clinical diagnosis? J. Vibroeng. 17(2), 995–1003 (2015)

    Google Scholar 

  145. Wang, S., Chen, Z., You, S., Wang, B., Shen, Y., Lei, B.: Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Comput. Appl. 34(11), 8657–8669 (2022)

    Article  Google Scholar 

  146. Wang, X., et al.: A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head ct scans. NeuroImage: Clin. 32, 102785 (2021)

    Google Scholar 

  147. Wardlaw, J.M., Keir, S.L., Dennis, M.S.: The impact of delays in computed tomography of the brain on the accuracy of diagnosis and subsequent management in patients with minor stroke. J. Neurol. Neurosurg. Psychiat. 74(1), 77–81 (2003). https://doi.org/10.1136/jnnp.74.1.77, https://jnnp.bmj.com/content/74/1/77

  148. Wichmann, J.L., Willemink, M.J., De Cecco, C.N.: Artificial intelligence and machine learning in radiology: current state and considerations for routine clinical implementation. Invest. Radiol. 55(9), 619–627 (2020)

    Article  Google Scholar 

  149. Wiley online library. https://www.onlinelibrary.wiley.com/. Accessed 12 Mar 2022

  150. Xing, Y., Zhong, L., Zhong, X.: An encoder-decoder network based fcn architecture for semantic segmentation. Wirel. Commun. Mobile Comput. 2020 (2020)

    Google Scholar 

  151. Xu, Y., et al.: Deep learning-enhanced internet of medical things to analyze brain ct scans of hemorrhagic stroke patients: a new approach. IEEE Sens. J. 21(22), 24941–24951 (2020)

    Article  Google Scholar 

  152. Yang, S., Wang, X., Yang, Q., Dong, E., Du, S.: Instance segmentation based on improved self-adaptive normalization. Sensors 22(12), 4396 (2022)

    Article  Google Scholar 

  153. Yao, A.D., Cheng, D.L., Pan, I., Kitamura, F.: Deep learning in neuroradiology: a systematic review of current algorithms and approaches for the new wave of imaging technology. Radiol. Artif. Intell. 2(2) (2020)

    Google Scholar 

  154. Yu, H., et al.: Methods and datasets on semantic segmentation: a review. Neurocomputing 304, 82–103 (2018)

    Article  Google Scholar 

  155. Zanaty, E.: Support vector machines (SVMs) versus multilayer perception (MLP) in data classification. Egypt. Inf. J. 13(3), 177–183 (2012)

    Google Scholar 

  156. Zhang, Z., Sejdić, E.: Radiological images and machine learning: trends, perspectives, and prospects. Comput. Biol. Med. 108, 354–370 (2019)

    Article  Google Scholar 

  157. Zhao, B., et al.: Automatic acute ischemic stroke lesion segmentation using semi-supervised learning. arXiv preprint arXiv:1908.03735 (2019)

  158. Zhao, Z., Yang, L., Zheng, H., Guldner, I.H., Zhang, S., Chen, D.Z.: Deep learning based instance segmentation in 3D biomedical images using weak annotation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 352–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_41

    Chapter  Google Scholar 

  159. Zhou, S.K., et al.: A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elbetel Taye Zewde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taye Zewde, E., Melese Motuma, M., Megersa Ayano, Y., Girma Debelee, T., Wolde Feyisa, D. (2024). Machine Learning Based Stroke Segmentation and Classification from CT-Scan: A Survey. In: Debelee, T.G., Ibenthal, A., Schwenker, F., Megersa Ayano, Y. (eds) Pan-African Conference on Artificial Intelligence. PanAfriConAI 2023. Communications in Computer and Information Science, vol 2068. Springer, Cham. https://doi.org/10.1007/978-3-031-57624-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57624-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57623-2

  • Online ISBN: 978-3-031-57624-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics