Abstract
Combinatorial optimization problems can involve computationaly expensive fitness function, making their resolution challenging. Surrogate models are one of the effective techniques used to solve such black-box problems by guiding the search towards potentially good solutions. In this paper, we focus on the use of surrogate based on multinomial approaches, particularly based on Walsh functions, to tackle pseudo-Boolean problems. Although this approach can be effective, a potential drawback is the growth of the polynomial expansion with problem dimension. We introduce a method for analyzing real-world combinatorial black-box problems defined through numerical simulation. This method combines Walsh spectral analysis and polynomial regression. Consequently, we propose a sparse surrogate model that incorporates selected, relevant terms and is simpler to optimize. To demonstrate our approach, we apply it to the bus stop spacing problem, an exemplary combinatorial pseudo-Boolean challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Recommended parameters values, and stopping criterion at 2 s of computation.
References
Armas, R., Aguirre, H., Tanaka, K.: Multi-objective optimization of level of service in urban transportation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1057–1064 (2017)
Armas, R., Aguirre, H., Zapotecas-Martínez, S., Tanaka, K.: Traffic signal optimization: minimizing travel time and fuel consumption. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6_3
Aurore Sallard, M.B., Hörl, S.: An open data-driven approach for travel demand synthesis: an application to são paulo. Reg. Stud. Reg. Sci. 8(1), 371–386 (2021). https://doi.org/10.1080/21681376.2021.1968941
Bai, Z., Nguyen, H., Davidson, I.: Block model guided unsupervised feature selection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1201–1211 (2020)
Balac, M., Hörl, S.: Synthetic population for the state of California based on open data: examples of the San Francisco bay area and San Diego county, February 2021
Baptista, R., Poloczek, M.: Bayesian optimization of combinatorial structures. In: International Conference on Machine Learning, pp. 462–471. PMLR (2018)
Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)
Branke, J.: Simulation optimisation: tutorial. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 862–889 (2019)
Chicano, F., Derbel, B., Verel, S.: Fourier transform-based surrogates for permutation problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 275–283 (2023)
Chicano, F., Whitley, D., Ochoa, G., Tinós, R.: Optimizing one million variable NK landscapes by hybridizing deterministic recombination and local search. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 753–760 (2017)
Dadkhahi, H., Rios, J., Shanmugam, K., Das, P.: Fourier representations for black-box optimization over categorical variables. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10156–10165 (2022)
Dadkhahi, H., et al.: Combinatorial black-box optimization with expert advice. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1918–1927 (2020)
Derbel, B., Pruvost, G., Liefooghe, A., Verel, S., Zhang, Q.: Walsh-based surrogate-assisted multi-objective combinatorial optimization: a fine-grained analysis for pseudo-Boolean functions. Appl. Soft Comput. 136, 110061 (2023)
Dushatskiy, A., Alderliesten, T., Bosman, P.A.: A novel approach to designing surrogate-assisted genetic algorithms by combining efficient learning of Walsh coefficients and dependencies. ACM Trans. Evol. Learn. Optim. 1(2), 1–23 (2021)
Dushatskiy, A., Mendrik, A.M., Alderliesten, T., Bosman, P.A.: Convolutional neural network surrogate-assisted GOMEA. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 753–761 (2019)
Gosavi, A., et al.: Simulation-Based Optimization. Springer, New York (2015). https://doi.org/10.1007/978-1-4899-7491-4
Han, L., Wang, H.: A random forest assisted evolutionary algorithm using competitive neighborhood search for expensive constrained combinatorial optimization. Memetic Comput. 13, 19–30 (2021)
Hordijk, W., Stadler, P.F.: Amplitude spectra of fitness landscapes. Adv. Complex Syst. 1(01), 39–66 (1998)
Hörl, S., Balac, M.: Introducing the eqasim pipeline: from raw data to agent-based transport simulation. Procedia Comput. Sci. 184, 712–719 (2021). the 12th International Conference on Ambient Systems, Networks and Technologies (ANT)/The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops
Hörl, S., Balac, M.: Synthetic population and travel demand for Paris and île-de-France based on open and publicly available data. Transp. Res. Part C: Emerg. Technol. 130, 103291 (2021)
Horni, A., Nagel, K., Axhausen, K. (eds.): Multi-Agent Transport Simulation MATSim. Ubiquity Press, London, August 2016
Ibeas, A., della Olio, L., Alonso, B., Sainz, O.: Optimizing bus stop spacing in urban areas. Transp. Res. Part E: Logist. Transp. Rev. 46(3), 446–458 (2010)
Leprêtre, F., Fonlupt, C., Verel, S., Marion, V.: Combinatorial surrogate-assisted optimization for bus stops spacing problem. In: Biennial International Conference on Artificial Evolution (EA 2019). Mulhouse, France, October 2019
Leprêtre, F.: Fitness landscapes analysis and adaptive algorithms design for traffic lights optimization on SIALAC benchmark. Appl. Soft Comput. 85, 105869 (2019)
Leprêtre, F., Verel, S., Fonlupt, C., Marion, V.: Walsh functions as surrogate model for pseudo-Boolean optimization problems. In: The Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 303–311. Proceedings of the Genetic and Evolutionary Computation Conference, ACM, Prague, Czech Republic, July 2019
Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 94 (2018)
Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based optimisation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20364-0_13
O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)
Oh, C., Tomczak, J., Gavves, E., Welling, M.: Combo: combinatorial Bayesian optimization using graph representations. In: ICML Workshop on Learning and Reasoning with Graph-Structured Data (2019)
Pires, F., Cachada, A., Barbosa, J., Moreira, A.P., Leitão, P.: Digital twin in industry 4.0: technologies, applications and challenges. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1, pp. 721–726. IEEE (2019)
Saka, A.A.: Model for determining optimum bus-stop spacing in urban areas. J. Transp. Eng. 127(3), 195–199 (2001)
Saka, A.A.: Effect of bus-stop spacing on mobile emissions in urban areas (2003)
Saltiel, D., Benhamou, E.: Feature selection with optimal coordinate ascent (OCA). arXiv preprint arXiv:1811.12064 (2018)
Stadler, P.F.: Landscapes and their correlation functions. J. Math. Chem. 20(1), 1–45 (1996)
Stadler, P.F.: Spectral landscape theory. Evolutionary dynamics: exploring the interplay of selection, accident, neutrality, and function, pp. 221–272 (2003)
Sutton, A.M., Whitley, L.D., Howe, A.E.: Computing the moments of k-bounded Pseudo-Boolean functions over hamming spheres of arbitrary radius in polynomial time. Theor. Comput. Sci. 425, 58–74 (2012)
Tinós, R., Przewozniczek, M.W., Whitley, D.: Iterated local search with perturbation based on variables interaction for pseudo-Boolean optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 296–304 (2022)
Verel, S., Derbel, B., Liefooghe, A., Aguirre, H., Tanaka, K.: A surrogate model based on Walsh decomposition for Pseudo-Boolean functions. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_15
Whitley, L.D., Chicano, F., Goldman, B.W.: Gray box optimization for MK landscapes (NK landscapes and MAX-kSAT). Evol. Comput. 24(3), 491–519 (2016)
Wright, A.H., Thompson, R.K., Zhang, J.: The computational complexity of NK fitness functions. IEEE Trans. Evol. Comput. 4(4), 373–379 (2000)
Zaefferer, M., Horn, D.: A first analysis of kernels for kriging-based optimization in hierarchical search spaces. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 399–410. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_32
Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 871–878 (2014)
Zheng, C., Zheng, S., Ma, G.: The bus station spacing optimization based on game theory. Adv. Mech. Eng. 7(2), 453979 (2015). https://doi.org/10.1155/2014/453979
Zhu, Z., Guo, X., Chen, H., Zeng, J., Wu, J.: Optimization of urban mini-bus stop spacing: a case study of Shanghai (China). Tehnicki Vjesnik 24, 949–955 (2017)
Acknowledgments
Experiments presented in this paper were carried out using the CALCULCO computing platform, supported by DSI/ULCO. We thank Sébastian Hörl for his help in setting up the Eqasim environment and the modification he made for our research project.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vendi, V., Verel, S., Fonlupt, C. (2024). Sparse Surrogate Model for Optimization: Example of the Bus Stops Spacing Problem. In: Stützle, T., Wagner, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2024. Lecture Notes in Computer Science, vol 14632. Springer, Cham. https://doi.org/10.1007/978-3-031-57712-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-57712-3_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57711-6
Online ISBN: 978-3-031-57712-3
eBook Packages: Computer ScienceComputer Science (R0)