Abstract
A new construction is introduced for creating random MAX-3SAT instances with low nonlinearity. Instead of generating random clauses, we generate random SAT expressions over 3 variables and then convert these into CNF SAT clauses. We prove that this yields structured problems with much lower nonlinearity. We also introduce a new method for weighting MAX-SAT clauses that preserves low nonlinearity and also breaks up plateaus. We evaluate these new problems by enumeration of instances with \(n = 30\) variables. One unexpected result is that Partition Crossover creates more tunnels on these semi-structured MAX-SAT problems compared to results on random NK landscapes. We show that Partition Crossover induces hypercube lattices over subsets of local optima; all of the local optima which appear in a lattice can be evaluated with a single linear equation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
In general, each Walsh coefficient except \(w_0\) is zero in \(\left( {\begin{array}{c}2^{k-1}\\ c/2\end{array}}\right) ^2\) out of \(\left( {\begin{array}{c}2^k\\ c\end{array}}\right) \) functions.
- 2.
- 3.
However, any neighborhood local search operator will suffice.
References
Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances. In: Gent, I.P. (ed.) Principles and Practice of Constraint Programming - CP 2009. Lecture Notes in Computer Science, vol. 5732, pp. 127–141. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-04244-7_13
Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT instances. In: IJCAI, vol. 9, pp. 387–392 (2009)
Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new probability distribution. In: Strichman, O., Szeider, S. (eds.) Theory and Applications of Satisfiability Testing - SAT 2010. Lecture Notes in Computer Science, vol. 6175, pp. 10–15. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14186-7_3
Bläsius, T., Friedrich, T., Sutton, A.M.: On the empirical time complexity of scale-free 3-SAT at the phase transition. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science(), vol. 11427, pp. 117–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_7
Boros, E., Crama, Y., Rodriquez-Heck, E.: Compact quadratizations for pseudo-Boolean functions. J. Comb. Optim. 39, 687–707 (2020)
Boros, E., Gruber, A.: On quadratization of pseudo-Boolean functions (2014). arXiv:1404.6538
Boros, E., Hammer, P.: Pseudo-Boolean optimization. Discr. Appl. Math. 123(1), 155–225 (2002)
Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005)
Chen, W., Whitley, D.: Decomposing SAT instances MAX-kSAT with pseudo backbones. In: European Conference on Evolutionary Computation in Combinatorial Optimization, LNCS, vol. 10197, pp. 75–90. Springer, Cham (2017)
Chen, W., Whitley, D., Tinós, R., Chicano, F.: Tunneling between Plateaus: improving on a state-of-the-art MAXSAT solver using partition crossover. In: GECCO Genetic and Evolutionay Computation Conference, pp. 921–928. ACM (2018)
Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw Hill, New York (1990)
Dattani, N.: Quadratization in discrete optimization and quantum mechanics (2019). ArXiv:1901.04405
Dunton, P., Whitley, D.: Reducing the cost of partition crossover on large MAXSAT problems: the PX-preprocessor. In: Genetic and Evolutionary Computation Conference (GECCO-2022), pp. 694–702 (2022)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 3569, pp. 61–75. Springer, Berlin (2006). https://doi.org/10.1007/11499107_5
Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: local search topology. J. Artif. Intell. Res. 7, 249–281 (1997)
Goldman, B., Punch, W.: Hyperplane elimination for quickly enumerating local optima. In: Chicano, F., Hu, B., Garcia-Sanchez, P. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science(), vol. 9595, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_11
Hains, D., Whitley, D., , Howe, A., Chen, W.: Hyperplane initialized local search for MAXSAT. In: Proceedings of GECCO’2009, pp. 805–812 (2013)
Helsgaun, K.: DIMACS TSP challenge results: current best tours found by LKH (2013). http://www.akira.ruc.dk/keld/research/LKH/DIMACS results.html. Accessed 24 Nov 2013
Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In: Proceedings of AAAI, pp. 661–666 (1999)
Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufman, Massachusetts (2004)
Kauffman, S.: The Origins of Order. Oxford Press, Oxford (1993)
Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions. Science 264, 1297–1301 (1994)
Li, C., Manya, F.: MAXSAT, hard and soft constraints. In: Handbook of Satisfiability. IOS Press, Amsterdam (2021)
Lin, C., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) Theory and Applications of Satisfiability Testing - SAT 2007. Lecture Notes in Computer Science, vol. 4501, pp. 121–133. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72788-0_15
Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: AAAI, pp. 44–446 (1992)
Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Johnson, D.S., Trick, M.A. (eds.) DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. AMS (1996)
Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the exact correlation structure of k-satisfiability landscapes. In: GECCO 2009, pp. 365–372. ACM (2009). https://doi.org/10.1145/1569901.1569952
Tinós, R., Whitley, D., Chicano, F.: Partition crossover for Pseudo-Boolean optimization. In: Foundations of Genetic Algorithms, (FOGA-15), pp. 137–149 (2015)
Whitley, D., Ochoa, G., Chicano, F.: Partition crossover can linearize local optima lattices of k-bounded Pseudo-Boolean functions. In: Foundations of Genetic Algorithms. ACM (2023)
Acknowledgements
This work was supported by an National Science Foundation (NSF) grant to D. Whitley, Award Number:1908866. This work was also partially funded by Universidad de Málaga, Ministerio de Ciencia, Innovación y Universidades del Gobierno de España under grant PID 2020-116727RB-I00, and by EU Horizon 2020 research and innovative program (grant 952215, TAILOR ICT-48 network).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Whitley, D., Ochoa, G., Floyd, N., Chicano, F. (2024). Reduction-Based MAX-3SAT with Low Nonlinearity and Lattices Under Recombination. In: Stützle, T., Wagner, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2024. Lecture Notes in Computer Science, vol 14632. Springer, Cham. https://doi.org/10.1007/978-3-031-57712-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-57712-3_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57711-6
Online ISBN: 978-3-031-57712-3
eBook Packages: Computer ScienceComputer Science (R0)