Abstract
The Quadratic Assignment Problem (QAP) is one of the major domains in the field of evolutionary computation, and more widely in combinatorial optimization. This paper studies the phase transition of the QAP, which can be described as a dramatic change in the problem’s computational complexity and satisfiability, within a narrow range of the problem parameters. To approach this phenomenon, we introduce a new QAP-SAT design of the initial problem based on submodularity to capture its difficulty with new features. This decomposition is studied experimentally using branch-and-bound and tabu search solvers. A phase transition parameter is then proposed. The critical parameter of phase transition satisfaction and that of the solving effort are shown to be highly correlated for tabu search, thus allowing the prediction of difficult instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Achary, T., Pillay, S., Pillai, S.M., Mqadi, M., Genders, E., Ezugwu, A.E.: A performance study of meta-heuristic approaches for quadratic assignment problem. Concurr. Comput.: Pract. Experience 33(17), e6321 (2021)
Ahuja, R.K., Orlin, J.B., Tiwari, A.: A greedy genetic algorithm for the quadratic assignment problem. Comput. Oper. Res. 27(10), 917–934 (2000)
Benlic, U., Hao, J.K.: Memetic search for the quadratic assignment problem. Expert Syst. Appl. 42(1), 584–595 (2015)
Biroli, G., Cocco, S., Monasson, R.: Phase transitions and complexity in computer science: an overview of the statistical physics approach to the random satisfiability problem. Phys. A 306, 381–394 (2002)
Buhmann, J.M., Dumazert, J., Gronskiy, A., Szpankowski, W.: Phase transitions in parameter rich optimization problems. In: 2017 Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 148–155. SIAM (2017)
Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB-a quadratic assignment problem library. J. Global Optim. 10, 391–403 (1997)
Cheeseman, P.C., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: IJCAI, vol. 91, pp. 331–337 (1991)
Chicano, F., Luque, G., Alba, E.: Elementary landscape decomposition of the quadratic assignment problem. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation, pp. 1425–1432 (2010)
Commander, C.W.: A survey of the quadratic assignment problem, with applications (2005)
Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the quadratic assignment problem. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)
Drezner, Z., Hahn, P.M., Taillard, É.D.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139, 65–94 (2005)
Elorza, A., Hernando, L., Lozano, J.A.: Characterizing permutation-based combinatorial optimization problems in fourier space. Evol. Comput., 1–39 (2022)
Fujii, K., Ito, N., Kim, S., Kojima, M., Shinano, Y., Toh, K.C.: Solving challenging large scale QAPs. arXiv preprint: arXiv:2101.09629 (2021)
Gent, I.P., Walsh, T.: The sat phase transition. In: ECAI, vol. 94, pp. 105–109. PITMAN (1994)
Gent, I.P., Walsh, T.: The TSP phase transition. Artif. Intell. 88(1–2), 349–358 (1996)
Gilmore, P.C.: Optimal and suboptimal algorithms for the quadratic assignment problem. J. Soc. Ind. Appl. Math. 10(2), 305–313 (1962)
Hartmann, A.K., Weigt, M.: Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics. John Wiley & Sons, Hoboken (2006)
Kondor, R.: A fourier space algorithm for solving quadratic assignment problems. In: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1017–1028. SIAM (2010)
Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica: J. Econometric Soc., 53–76 (1957)
Laurent, M., Seminaroti, M.: The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure. Oper. Res. Lett. 43(1), 103–109 (2015)
Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu, L.: Understanding the empirical hardness of NP-complete problems. Commun. ACM 57(5), 98–107 (2014)
Loiola, E.M., De Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)
Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)
Monasson, R.: Introduction to phase transitions in random optimization problems. arXiv preprint: arXiv:0704.2536 (2007)
Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic? Phase transitions? Nature 400(6740), 133–137 (1999)
Pitzer, E., Beham, A., Affenzeller, M.: Automatic algorithm selection for the quadratic assignment problem using fitness landscape analysis. In: Middendorf, M., Blum, C. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, vol. 7832, pp. 109–120. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-37198-1_10
Silva, A., Coelho, L.C., Darvish, M.: Quadratic assignment problem variants: a survey and an effective parallel memetic iterated TABU search. Eur. J. Oper. Res. 292(3), 1066–1084 (2021)
Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial optimization problems. Comput. Oper. Res. 39(5), 875–889 (2012)
Smith-Miles, K.A.: Towards insightful algorithm selection for optimisation using meta-learning concepts. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 4118–4124. IEEE (2008)
Stützle, T., Fernandes, S.: New benchmark instances for the QAP and the experimental analysis of algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, vol. 3004, pp. 199–209. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-24652-7_20
Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)
Taillard, E.D.: Comparison of iterative searches for the quadratic assignment problem. Locat. Sci. 3(2), 87–105 (1995)
Tayarani-N, M.H., Prügel-Bennett, A.: Quadratic assignment problem: a landscape analysis. Evol. Intel. 8, 165–184 (2015)
Verel, S., Daolio, F., Ochoa, G., Tomassini, M.: Sampling local optima networks of large combinatorial search spaces: the QAP case. In: Auger, A., Fonseca, C., Lourenc, N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem Solving from Nature - PPSN XV. Lecture Notes in Computer Science(), vol. 11102, pp. 257–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_21
Vollmann, T.E., Buffa, E.S.: The facilities layout problem in perspective. Manage. Sci. 12(10), B–450 (1966)
Weigt, M., Hartmann, A.K.: Number of guards needed by a museum: a phase transition in vertex covering of random graphs. Phys. Rev. Lett. 84(26), 6118 (2000)
Yadav, N., Murawski, C., Sardina, S., Bossaerts, P.: Phase transition in the knapsack problem. arXiv preprint: arXiv:1806.10244 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Verel, S., Thomson, S.L., Rifki, O. (2024). Where the Really Hard Quadratic Assignment Problems Are: The QAP-SAT Instances. In: Stützle, T., Wagner, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2024. Lecture Notes in Computer Science, vol 14632. Springer, Cham. https://doi.org/10.1007/978-3-031-57712-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-57712-3_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57711-6
Online ISBN: 978-3-031-57712-3
eBook Packages: Computer ScienceComputer Science (R0)