Abstract
Structure-preserving signatures (SPS) have emerged as an important cryptographic building block, as their compatibility with the Groth-Sahai (GS) NIZK framework allows to construct protocols under standard assumptions with reasonable efficiency.
Over the last years there has been a significant interest in the design of threshold signature schemes. However, only very recently Crites et al. (ASIACRYPT 2023) have introduced threshold SPS (TSPS) along with a fully non-interactive construction. While this is an important step, their work comes with several limitations. With respect to the construction, they require the use of random oracles, interactive complexity assumptions and are restricted to so called indexed Diffie-Hellman message spaces. Latter limits the use of their construction as a drop-in replacement for SPS. When it comes to security, they only support static corruptions and do not allow partial signature queries for the forgery.
In this paper, we ask whether it is possible to construct TSPS without such restrictions. We start from an SPS from Kiltz, Pan and Wee (CRYPTO 2015) which has an interesting structure, but thresholdizing it requires some modifications. Interestingly, we can prove it secure in the strongest model (TS-UF-1) for fully non-interactive threshold signatures (Bellare et al., CRYPTO 2022) and even under fully adaptive corruptions. Surprisingly, we can show the latter under a standard assumption without requiring any idealized model. All known constructions of efficient threshold signatures in the discrete logarithm setting require interactive assumptions and idealized models.
Concretely, our scheme in type III bilinear groups under the SXDH assumption has signatures consisting of 7 group elements. Compared to the TSPS from Crites et al. (2 group elements), this comes at the cost of efficiency. However, our scheme is secure under standard assumptions, achieves strong and adaptive security guarantees and supports general message spaces, i.e., represents a drop-in replacement for many SPS applications. Given these features, the increase in the size of the signature seems acceptable even for practical applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
A signature is called strongly unforgeable when the adversary is not only incapable of producing a valid signature for a fresh message but also, it cannot generate a new signature for a challenge message \(M^*\), by observing a valid signature for the same message \(M^*\).
References
Abe, M., Ambrona, M., Ohkubo, M., Tibouchi, M.: Lower bounds on structure-preserving signatures for bilateral messages. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_1
Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_3
Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anonymous tags for traceable signatures. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 183–200. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_11
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12
Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_37
Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_34
Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_29
Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_19
Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_23
Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (Almost) Tightly-Secure Simulation-Sound QA-NIZK with Applications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_21
Abram, D., Nof, A., Orlandi, C., Scholl, P., Shlomovits, O.: Low-bandwidth threshold ECDSA via pseudorandom correlation generators. In: 2022 IEEE Symposium on Security and Privacy. pp. 2554–2572. IEEE Computer Society Press (2022). https://doi.org/10.1109/SP46214.2022.9833559
Almansa, J.F., Damgard, I., Nielsen, J.B.: Simplified threshold RSA with adaptive and proactive security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 593–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_35
Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_23
Bacho, R., Loss, J.: On the adaptive security of the threshold BLS signature scheme. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 193–207. ACM Press (2022). https://doi.org/10.1145/3548606.3560656
Bacho, R., Loss, J., Tessaro, S., Wagner, B., Zhu, C.: Twinkle: threshold signatures from DDH with full adaptive security. Cryptology ePrint Archive, Paper 2023/1482 (2023). https://eprint.iacr.org/2023/1482
Badertscher, C., Matt, C., Waldner, H.: Policy-compliant signatures. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol. 13044, pp. 350–381. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_12
Badertscher, C., Sedaghat, M., Waldner, H.: Fine-grained accountable privacy via unlinkable policy-compliant signatures. Cryptology ePrint Archive, Paper 2023/1070 (2023). https://eprint.iacr.org/2023/1070
Bellare, M., Crites, E.C., Komlo, C., Maller, M., Tessaro, S., Zhu, C.: Better than advertised security for non-interactive threshold signatures. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 517–550. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15985-5_18
Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003). https://doi.org/10.1007/s00145-002-0120-1
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.1145/168588.168596
Blazy, O., Canard, S., Fuchsbauer, G., Gouget, A., Sibert, H., Traoré, J.: Achieving optimal anonymity in transferable e-cash with a judge. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 206–223. Springer, Heidelberg (Jul (2011)
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30
Bouez, A., Singh, K.: One round threshold ECDSA without roll call. In: Rosulek, M. (ed.) Topics in Cryptology - CT-RSA 2023. LNCS, vol. 13871, pp. 389–414. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30872-7_15
Camenisch, J., Dubovitskaya, M., Haralambiev, K.: Efficient structure-preserving signature scheme from standard assumptions. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 76–94. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_5
Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 262–288. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_11
Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: 28th ACM STOC, pp. 639–648. ACM Press (1996). https://doi.org/10.1145/237814.238015
Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1769–1787. ACM Press (2020). https://doi.org/10.1145/3372297.3423367
Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–116. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_7
Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_18
Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and ZAPs for algebraic languages. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 768–798. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_27
Crites, E., Kohlweiss, M., Preneel, B., Sedaghat, M., Slamanig, D.: Threshold structure-preserving signatures. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023. LNCS, pp. 348–382. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8724-5_11
Crites, E., Komlo, C., Maller, M.: Fully adaptive Schnorr threshold signatures. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, pp. 678–709. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38557-5_22
Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSEC keys via threshold ECDSA from generic MPC. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020, Part II. LNCS, vol. 12309, pp. 654–673. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_32
Das, S., Ren, L.: Adaptively secure BLS threshold signatures from DDH and co-CDH. Cryptology ePrint Archive, Paper 2023/1553 (2023). https://eprint.iacr.org/2023/1553
Deng, Y., Ma, S., Zhang, X., Wang, H., Song, X., Xie, X.: Promise \(\varSigma \)-protocol: how to construct efficient threshold ECDSA from encryptions based on class Groups. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 557–586. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_19
Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_28
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017). https://doi.org/10.1007/s00145-015-9220-6
Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_14
Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_12
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_8
Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1179–1194. ACM Press (2018). https://doi.org/10.1145/3243734.3243859
Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 305–321. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_18
Ghadafi, E.: More efficient structure-preserving signatures - or: bypassing the type-III lower bounds. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017, Part II. LNCS, vol. 10493, pp. 43–61. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_3
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35
Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introducing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_16
Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 123–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_5
Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilinear assumptions. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 183–209. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_7
Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_14
Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4
Komlo, C., Goldberg, I.: FROST: flexible round-optimized Schnorr threshold signatures. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 34–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_2
Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed non-interactive adaptively-secure threshold signatures with short shares. Theor. Comput. Sci. 645, 1–24 (2016)
Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_17
Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_15
Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: from cryptosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 331–350. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_20
Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_27
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725
Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–613 (1979)
Wong, H.W.H., Ma, J.P.K., Yin, H.H.F., Chow, S.S.M.: Real threshold ECDSA. In: 30th Annual Network and Distributed System Security Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023. The Internet Society (2023). https://www.ndss-symposium.org/ndss-paper/real-threshold-ecdsa/
Acknowledgements
Mahdi Sedaghat was supported in part by the Research Council KU Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of Things with contract number C16/15/058 and by CyberSecurity Research Flanders with reference number VR20192203. Daniel Slamanig was supported by the Austrian Science Fund (FWF) and netidee SCIENCE Profet (GA No. P31621-N38). His work was done while being affiliated with AIT Austrian Institute of Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Mitrokotsa, A., Mukherjee, S., Sedaghat, M., Slamanig, D., Tomy, J. (2024). Threshold Structure-Preserving Signatures: Strong and Adaptive Security Under Standard Assumptions. In: Tang, Q., Teague, V. (eds) Public-Key Cryptography – PKC 2024. PKC 2024. Lecture Notes in Computer Science, vol 14601. Springer, Cham. https://doi.org/10.1007/978-3-031-57718-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-57718-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57720-8
Online ISBN: 978-3-031-57718-5
eBook Packages: Computer ScienceComputer Science (R0)