Abstract
We present \(\textsf{ReSolveD} \), a new candidate post-quantum signature scheme under the regular syndrome decoding (RSD) assumption for random linear codes, which is a well-established variant of the well-known syndrome decoding (SD) assumption. Our signature scheme is obtained by designing a new zero-knowledge proof for proving knowledge of a solution to the RSD problem in the recent VOLE-in-the-head framework using a sketching scheme to verify that a vector has weight exactly one. We achieve a signature size of 3.99 KB with a signing time of 27.3 ms and a verification time of 23.1 ms on a single core of a standard desktop for a 128-bit security level. Compared to the state-of-the-art code-based signature schemes, our signature scheme achieves \(1.5{\times }\)–\(2{\times }\) improvement in terms of the common “signature size + public-key size” metric, while keeping the computational efficiency competitive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This technique somewhat resembles the classical MPC-in-the-head technique.
- 2.
We select the parameters of \(\textsf{ReSolveD} \)-128 and \(\textsf{ReSolveD} \)-L{1,3,5} independently, because the former targets at signatures with 128-bit security while the latter targets other NIST submissions.
- 3.
We adapted the reference implementation of FAEST at https://github.com/faest-sign/faest-ref. We also note that OpenSSL is required to facilitate fast evaluation.
References
Aguilar Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The return of the SDitH. LNCS, vol. 14008, pp. 564–596. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_20
Alaoui, S.M.E.Y., Cayrel, P., Bansarkhani, R.E., Hoffmann, G.: Code-based identification and signature schemes in software. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.R., Xu, L. (eds.) Security Engineering and Intelligence Informatics - CD-ARES 2013 Workshops: MoCrySEn and SeCIHD, Regensburg, Germany, 2–6 September 2013, Proceedings. LNCS, vol. 8128, pp. 122–136. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40588-4_9
Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 728–758. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17659-4_25
Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash function. Cryptology ePrint Archive, Report 2003/230 (2003). https://eprint.iacr.org/2003/230
Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: LESS-FM: fine-tuning signatures from the code equivalence problem. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021. LNCS, vol. 12841, pp. 23–43. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-81293-5_2
Barg, S.: Some new NP-complete coding problems. Probl. Inf. Transm. 30(3), 209–214 (1994)
Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to Brie: efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 192–211. ACM Press, November 2021. https://doi.org/10.1145/3460120.3484812
Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: Moz\(\mathbb{Z}_{2^k}\)arella: efficient vector-OLE and zero-knowledge proofs over \(\mathbb{Z}_{2^k}\). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, pp. 329–358. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15985-5_12
Baum, C., et al.: FAEST: algorithm specifications. Technical report, National Institute of Standards and Technology (2023). https://faest.info/faest-spec-v1.1.pdf
Baum, C., et al.: Publicly verifiable zero-knowledge and post-quantum signatures from VOLE-in-the-Head. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 581–615. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38554-4_19
Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’Cheese: zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 92–122. Springer, Heidelberg (2021). Virtual Event, https://doi.org/10.1007/978-3-030-84259-8_4
Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11
Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems (Corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978). https://doi.org/10.1109/TIT.1978.1055873
Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: code-based signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 45–65. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-51938-4_3
Bidoux, L., Gaborit, P., Kulkarni, M., Mateu, V.: Code-based signatures from new proofs of knowledge for the syndrome decoding problem. Des. Codes Cryptogr. 91(2), 497–544 (2023). https://doi.org/10.1007/s10623-022-01114-3
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1292–1303. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978429
Briaud, P., Øygarden, M.: A new algebraic approach to the regular syndrome decoding problem and implications for PCG constructions. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. LNCS, vol. 14008, pp. 391–422. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_14
Carozza, E., Couteau, G., Joux, A.: Short signatures from regular syndrome decoding in the head. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. LNCS, vol. 14008, pp. 532–563. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_19
Cascudo, I., Damgård, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I.: Efficient UC commitment extension with homomorphism for free (and applications). In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 606–635. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-34621-8_22
Cayrel, P., Véron, P., Alaoui, S.M.E.Y.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-19574-7_12
Chou, T., Persichetti, E., Santini, P.: On linear equivalence, canonical forms, and digital signatures. Cryptology ePrint Archive, Paper 2023/1533 (2023). https://eprint.iacr.org/2023/1533
Debris-Alazard, T., Sendrier, N., Tillich, J.P.: Wave: a new family of trapdoor one-way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 21–51. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-34578-5_2
Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge: two multiplications for the price of one, pp. 829–841. ACM Press (2022). https://doi.org/10.1145/3548606.3559385
Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applications. In: 2nd Conference on Information-Theoretic Cryptography (2021)
Esser, A., Santini, P.: Not just regular decoding: asymptotics and improvements of regular syndrome decoding attacks. Cryptology ePrint Archive, Paper 2023/1568 (2023). https://eprint.iacr.org/2023/1568
Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: shorter signatures from zero-knowledge proofs. In: CRYPTO 2022, Part II, pp. 541–572. LNCS, Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_19
Feneuil, T., Joux, A., Rivain, M.: Shared permutation for syndrome decoding: new zero-knowledge protocol and code-based signature. Des. Codes Cryptogr. 91(2), 563–608 (2023). https://doi.org/10.1007/s10623-022-01116-1, First appeared online at https://eprint.iacr.org/2021/1576
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gaborit, P., Girault, M.: Lightweight code-based identification and signature. In: IEEE International Symposium on Information Theory, ISIT 2007, Nice, France, 24–29 June 2007, pp. 191–195. IEEE (2007). https://doi.org/10.1109/ISIT.2007.4557225
Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup. Cryptography 6(1), 5 (2022). https://doi.org/10.3390/cryptography6010005
Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy, pp. 825–841. IEEE Computer Society Press, May 2020. https://doi.org/10.1109/SP40000.2020.00016
Guo, X., et al.: Half-Tree: halving the cost of tree expansion in COT and DPF. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part I. LNCS, vol. 14004, pp. 330–362. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30545-0_12
Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 3–33. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96878-0_1
Hülsing, A., et al.: SPHINCS+. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, June 2007. https://doi.org/10.1145/1250790.1250794
Kales, D., Zaverucha, G.: Improving the performance of the Picnic signature scheme. IACR TCHES 2020(4), 154–188 (2020). https://doi.org/10.13154/tches.v2020.i4.154-188, https://tches.iacr.org/index.php/TCHES/article/view/8680
Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_35
Liu, H., Wang, X., Yang, K., Yu, Y.: The hardness of LPN over any integer ring and field for PCG applications. Cryptology ePrint Archive, Report 2022/712 (2022). https://eprint.iacr.org/2022/712
Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Melchor, C.A., et al.: The Syndrome Decoding in the Head (SD-in-the-Head) signature scheme. Technical report, National Institute of Standards and Technology (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SDitH-spec-web.pdf
Melchor, C.A., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification scheme with reduced communication. In: 2011 IEEE Information Theory Workshop, ITW 2011, Paraty, Brazil, 16–20 October 2011, pp. 648–652. IEEE (2011). https://doi.org/10.1109/ITW.2011.6089577
Melchor, C.A., Hülsing, A., Joseph, D., Majenz, C., Ronen, E., Yue, D.: SDitH in the QROM. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part VII. LNCS, vol. 14444, pp. 317–350. Springer, Heidelberg (2023). https://doi.org/10.1007/978-981-99-8739-9_11
Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40
NIST: Call for additional digital signature schemes for the post-quantum cryptography standardization process (2022). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-52153-4_22
Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for short secrets. In: NDSS 2017. The Internet Society, February/March 2017
Persichetti, E., Santini, P.: A new formulation of the linear equivalence problem and shorter less signatures. Cryptology ePrint Archive, Paper 2023/847 (2023). https://eprint.iacr.org/2023/847
Prest, T., et al.: FALCON. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Roy, L.: SoftSpokenOT: quieter OT extension from small-field silent VOLE in the minicrypt model. In: CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 657–687. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_23
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980). https://doi.org/10.1145/322217.322225
Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2
Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996). https://doi.org/10.1007/s002000050053
Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In: 2021 IEEE Symposium on Security and Privacy, pp. 1074–1091. IEEE Computer Society Press, May 2021. https://doi.org/10.1109/SP40001.2021.00056
Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: efficient conversions for zero-knowledge proofs with applications to machine learning. In: Bailey, M., Greenstadt, R. (eds.) USENIX Security 2021, pp. 501–518. USENIX Association, August 2021
Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: interactive zero-knowledge proofs with sublinear communication, pp. 2901–2914. ACM Press (2022). https://doi.org/10.1145/3548606.3560667
Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: efficient and affordable zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 2986–3001. ACM Press, November 2021. https://doi.org/10.1145/3460120.3484556
Zaverucha, G., et al.: Picnic. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
Zhang, K., Cui, H., Yu, Y.: SPHINCS-alpha. Technical report, National Institute of Standards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation, EUROSAM 1979, An International Symposium on Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceedings. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_73
Acknowledgements
We thank anonymous reviewers for their helpful comments. Yu Yu is supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309705), the National Natural Science Foundation of China (Grant Nos. 62125204 and 92270201), and the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008). Yu Yu also acknowledges the support from the XPLORER PRIZE. Kang Yang is supported by the National Natural Science Foundation of China (Grant Nos. 62102037 and 61932019).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Cui, H., Liu, H., Yan, D., Yang, K., Yu, Y., Zhang, K. (2024). \(\textsf{ReSolveD} \): Shorter Signatures from Regular Syndrome Decoding and VOLE-in-the-Head. In: Tang, Q., Teague, V. (eds) Public-Key Cryptography – PKC 2024. PKC 2024. Lecture Notes in Computer Science, vol 14601. Springer, Cham. https://doi.org/10.1007/978-3-031-57718-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-57718-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57720-8
Online ISBN: 978-3-031-57718-5
eBook Packages: Computer ScienceComputer Science (R0)