Skip to main content

Some Geometric and Tomographic Results on Gray-Scale Images

  • Conference paper
Discrete Geometry and Mathematical Morphology (DGMM 2024)

Abstract

Discrete tomography deals with the reconstruction of images from a (usually small) set of X-ray projections. This is achieved by modeling the tomographic problem as a linear system of equations and then applying a suitable discrete reconstruction algorithm based on iterations. In this paper we adopt the well-known grid model and prove some geometric properties of integer solutions consisting of \(p\ge 2\) gray levels. In particular, we show that all gray-scale solutions having the same two-norm belong to a same hypersphere, centered at the uniform image related to the data and having radius ranging in an interval whose bounds are explicitly computed.

Moving from a uniqueness theorem for gray-scale images, we compute special sets of directions that guarantee uniqueness of reconstruction and exploit them as the input of the Conjugate Gradient Least Squares algorithm. Then we apply an integer rounding to the resulting output and, basing on previously described geometric parameters, we test the quality of the obtained reconstructions for an increasing number of iterations, which leads to a progressive improvement of the percentage of correctly reconstructed pixels, until perfect reconstruction is achieved. Differently, using sets of directions which are classically employed, but far from being sets of uniqueness, only partial reconstructions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batenburg, K., Fortes, W., Hajdu, L., Tijdeman, R.: Bounds on the quality of reconstructed images in binary tomography. Disc. Appl. Math. 161(15), 2236–2251 (2013). https://doi.org/10.1016/j.dam.2012.11.010

    Article  MathSciNet  Google Scholar 

  2. Brunetti, S., Dulio, P., Peri, C.: Characterization of (-1,0,+1) valued functions in discrete tomography under sets of four directions. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 394–405. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19867-0_33

    Chapter  Google Scholar 

  3. Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded lattice sets from four X-rays. Disc. Appl. Math. 161(15), 2281–2292 (2013). https://doi.org/10.1016/j.dam.2012.09.010

    Article  MathSciNet  Google Scholar 

  4. Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded sets in \(\mathbb{Z} ^n\). Disc. Appl. Math. 183, 20–30 (2015). https://doi.org/10.1016/j.dam.2014.01.016

    Article  Google Scholar 

  5. Brunetti, S., Dulio, P., Peri, C.: Uniqueness results for grey scale digital images. Fund. Inf. 172(2), 221–238 (2020). https://doi.org/10.3233/fi-2020-1902

    Article  MathSciNet  Google Scholar 

  6. Dalen, B.V., Hajdu, L., Tijdeman, R.: Bounds for discrete tomography solutions. Indag. Math. 24(2), 391–402 (2013). https://doi.org/10.1016/j.indag.2012.12.005

    Article  MathSciNet  Google Scholar 

  7. Dulio, P., Frosini, A., Pagani, S.: A geometrical characterization of regions of uniqueness and applications to discrete tomography. Inverse Prob. 31(12), 125011 (2015). https://doi.org/10.1088/0266-5611/31/12/125011

    Article  MathSciNet  Google Scholar 

  8. Dulio, P., Pagani, S.: A rounding theorem for unique binary tomographic reconstruction. Disc. Appl. Math. 268, 54–69 (2019). https://doi.org/10.1016/j.dam.2019.05.005

    Article  MathSciNet  Google Scholar 

  9. Gardner, R., Gritzmann, P.: Discrete tomography: determination of finite sets by X-rays. Trans. Am. Math. Soc. 349(6), 2271–2295 (1997). https://doi.org/10.1090/S0002-9947-97-01741-8

    Article  MathSciNet  Google Scholar 

  10. Guédon, J.P., Normand, N.: The Mojette transform: the first ten years. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 79–91. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31965-8_8

    Chapter  Google Scholar 

  11. Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math. 534, 119–128 (2001). https://doi.org/10.1515/crll.2001.037

    Article  MathSciNet  Google Scholar 

  12. Katz, M.: Questions of Uniqueness and Resolution in Reconstruction from Projections/Myron Bernard Katz. Springer, New York (1978). https://doi.org/10.1007/978-3-642-45507-0

    Book  Google Scholar 

  13. Normand, N., Kingston, A., Évenou, P.: A geometry driven reconstruction algorithm for the Mojette transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_11

    Chapter  Google Scholar 

  14. Van Aert, S., Batenburg, K., Rossell, M., Erni, R., Van Tendeloo, G.: Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334), 374–377 (2011). https://doi.org/10.1038/nature09741

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia M. C. Pagani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Ascolese, M., Dulio, P., Pagani, S.M.C. (2024). Some Geometric and Tomographic Results on Gray-Scale Images. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57793-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57792-5

  • Online ISBN: 978-3-031-57793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics