Abstract
Binary Partition Hierarchies (BPHs) and Minimum Spanning Trees are key structures in hierarchical image analysis. However, the explosion in the size of image data poses a new challenge, as the memory available in conventional workstations becomes insufficient to execute classical algorithms. To address this problem, specific algorithms have been proposed for out-of-core computation of BPHs, where a BPH is actually represented by a collection of smaller trees, called a distribution, thus reducing the memory footprint of the algorithms. In this article, we address the problem of designing efficient out-of-core algorithms for computing classical attributes in distributions of BPHs, which is a necessary step towards a complete out-of-core hierarchical analysis workflow that includes tasks such as connected filtering and the generation of other representations such as hierarchical watersheds. The proposed algorithms are based on generic operations designed to propagate information through the distribution of trees, enabling the computation of attributes such as area, volume, height, minima and number of minima.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)
Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_8
Cousty, J., Perret, B., Phelippeau, H., Carneiro, S., Kamlay, P., Buzer, L.: An algebraic framework for out-of-core hierarchical segmentation algorithms. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 378–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_27
Gazagnes, S., Wilkinson, M.H.F.: Distributed connected component filtering and analysis in 2D and 3D tera-scale data sets. IEEE TIP 30, 3664–3675 (2021)
Gazagnes, S., Wilkinson, M.H.: Parallel attribute computation for distributed component forests. In: 2022 IEEE ICIP, pp. 601–605 (2022)
Gigli, L., Velasco-Forero, S., Marcotegui, B.: On minimum spanning tree streaming for hierarchical segmentation. PRL 138, 155–162 (2020)
Götz, M., Cavallaro, G., Geraud, T., Book, M., Riedel, M.: Parallel computation of component trees on distributed memory machines. TPDS 29, 2582–2598 (2018)
Havel, J., Merciol, F., Lefèvre, S.: Efficient tree construction for multiscale image representation and processing. JRTIP 16, 1129–1146 (2019)
Kazemier, J.J., Ouzounis, G.K., Wilkinson, M.H.F.: Connected morphological attribute filters on distributed memory parallel machines. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 357–368. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_29
Lebon, Q., Lefèvre, J., Cousty, J., Perret, B.: Interactive segmentation with incremental watershed cuts. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds.) CIARP 2023. LNCS, vol. 14469, pp. 189–200. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-49018-7_14
Lefèvre, J., Cousty, J., Perret, B., Phelippeau, H.: Join, select, and insert: efficient out-of-core algorithms for hierarchical segmentation trees. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) DGMM 2022. LNCS, vol. 13493, pp. 274–286. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19897-7_22
Meyer, F.: The dynamics of minima and contours. In: Maragos, P., Schafer, R.W., Butt, M.A. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 5, pp. 329–336. Springer, Boston (1996). https://doi.org/10.1007/978-1-4613-0469-2_38
Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_17
Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_12
Passat, N., Kurtz, C., Vacavant, A.: Virtual special issue: “hierarchical representations: new results and challenges for image analysis’’. PRL 138, 201–203 (2020)
Perret, B., Chierchia, G., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman, L.: Higra: hierarchical graph analysis. SoftwareX 10, 100335 (2019)
Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE TIP 8, 1153–1160 (1995)
Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. TIP 9(4), 561–576 (2000)
Silva, A.G., de Alencar Lotufo, R.: Efficient computation of new extinction values from extended component tree. PRL 32(1), 79–90 (2011)
Silva, D.J., Alves, W.A., Hashimoto, R.F.: Incremental bit-quads count in component trees: theory, algorithms, and optimization. PRL 129, 33–40 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lefèvre, J., Cousty, J., Perret, B., Phelippeau, H. (2024). Out-of-Core Attribute Algorithms for Binary Partition Hierarchies. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-57793-2_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57792-5
Online ISBN: 978-3-031-57793-2
eBook Packages: Computer ScienceComputer Science (R0)