Skip to main content

Image Segmentation by Hierarchical Layered Oriented Image Foresting Transform Subject to Closeness Constraints

  • Conference paper
Discrete Geometry and Mathematical Morphology (DGMM 2024)

Abstract

In this work, we address the problem of image segmentation, subject to high-level constraints expected for the objects of interest. More specifically, we define closeness constraints to be used in conjunction with geometric constraints of inclusion in the Hierarchical Layered Oriented Image Foresting Transform (HLOIFT) algorithm. The proposed method can handle the segmentation of a hierarchy of objects with nested boundaries, each with its own expected boundary polarity constraint, making it possible to control the maximum distances (in a geodesic sense) between the successive nested boundaries. The method is demonstrated in the segmentation of nested objects in colored images with superior accuracy compared to its precursor methods and also when compared to some recent click-based methods.

Thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – (Grant 407242/2021-0, 313087/2021-0, 166631/2018-3), CAPES (88887.136422/2017-00), FAPESP (2014/12236-1, 2014/50937-1) and IPT (Institute for Technological Research).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/SamsungLabs/ritm_interactive_segmentation/blob/master.

  2. 2.

    https://segment-anything.com/.

  3. 3.

    https://github.com/pauloavmiranda/HLOIFT_CC.

References

  1. Barreto, T.L., et al.: Classification of detected changes from multitemporal high-res Xband SAR images: intensity and texture descriptors from superpixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(12), 5436–5448 (2016)

    Article  Google Scholar 

  2. Belém, F., et al.: Fast and effective superpixel segmentation using accurate saliency estimation. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) DGMM 2022. LNCS, vol. 13493, pp. 261–273. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19897-7_21

    Chapter  Google Scholar 

  3. Braz, C.M., Santos, L.F.D., Miranda, P.A.V.: Graph-based image segmentation with shape priors and band constraints. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) DGMM 2022. LNCS, vol. 13493, pp. 287–299. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19897-7_23

    Chapter  Google Scholar 

  4. Cai, W., Wei, Z., Song, Y., Li, M., Yang, X.: Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images. Multimedia Tools Appl. 80, 32131–32147 (2021)

    Article  Google Scholar 

  5. Condori, M.A.T., Miranda, P.A.V.: Differential oriented image foresting transform segmentation by seed competition. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) DGMM 2022. LNCS, vol. 13493, pp. 300–311. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19897-7_24

    Chapter  Google Scholar 

  6. Condori, M.A., Miranda, P.A.: Differential oriented image foresting transform and its applications to support high-level priors for object segmentation. J. Math. Imaging Vis. 65, 802–817 (2023)

    Article  MathSciNet  Google Scholar 

  7. Conze, P.H., Andrade-Miranda, G., Singh, V.K., Jaouen, V., Visvikis, D.: Current and emerging trends in medical image segmentation with deep learning. IEEE Trans. Radiat. Plasma Med. Sci. 7, 545–569 (2023)

    Article  Google Scholar 

  8. Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)

    Article  Google Scholar 

  9. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013)

    Article  Google Scholar 

  10. Hu, X., Fuxin, L., Samaras, D., Chen, C.: Topology-Preserving Deep Image Segmentation. Curran Associates Inc., Red Hook (2019)

    Google Scholar 

  11. Jin, X., Che, J., Chen, Y.: Weed identification using deep learning and image processing in vegetable plantation. IEEE Access 9, 10940–10950 (2021)

    Article  Google Scholar 

  12. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  13. Leon, L.M., Ciesielski, K.C., Miranda, P.A.: Efficient hierarchical multi-object segmentation in layered graphs. Math. Morphol. Theory Appl. 5(1), 21–42 (2021). https://doi.org/10.1515/mathm-2020-0108

    Article  Google Scholar 

  14. Lézoray, O., Grady, L.: Image Processing and Analysis with Graphs: Theory and Practice. CRC Press, Boca Raton (2012)

    Google Scholar 

  15. Magadza, T., Viriri, S.: Deep learning for brain tumor segmentation: a survey of state-of-the-art. J. Imaging 7(2), 19 (2021)

    Article  Google Scholar 

  16. Maninis, K.K., Caelles, S., Pont-Tuset, J., Gool, L.V.: Deep extreme cut: from extreme points to object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 616–625 (2018)

    Google Scholar 

  17. Mansilla, L.A.C., Miranda, P.A.V.: Oriented image foresting transform segmentation: connectivity constraints with adjustable width. In: 29th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 289–296, October 2016

    Google Scholar 

  18. Mansilla, L.A.C., Miranda, P.A.V., Cappabianco, F.A.M.: Oriented image foresting transform segmentation with connectivity constraints. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2554–2558, September 2016

    Google Scholar 

  19. Mansilla, L., Miranda, P.: Image segmentation by oriented image foresting transform: handling ties and colored images. In: 18th International Conference on Digital Signal Processing, Greece, pp. 1–6, July 2013

    Google Scholar 

  20. Mansilla, L., Miranda, P.: Image segmentation by oriented image foresting transform with geodesic star convexity. In: 15th International Conference on Computer Analysis of Images and Patterns (CAIP), York, UK, vol. 8047, pp. 572–579, August 2013

    Google Scholar 

  21. Miranda, P., Falcao, A., Spina, T.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)

    Article  MathSciNet  Google Scholar 

  22. Miranda, P., Mansilla, L.: Oriented image foresting transform segmentation by seed competition. IEEE Trans. Image Process. 23(1), 389–398 (2014)

    Article  MathSciNet  Google Scholar 

  23. de Moraes Braz, C., Miranda, P.A., Ciesielski, K.C., Cappabianco, F.A.: Optimum cuts in graphs by general fuzzy connectedness with local band constraints. J. Math. Imaging Vis. 62, 659–672 (2020)

    Article  MathSciNet  Google Scholar 

  24. Nigri, E., Ziviani, N., Cappabianco, F., Antunes, A., Veloso, A.: Explainable deep CNNs for MRI-based diagnosis of Alzheimer’s disease. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  25. Oliveira, D.E.C., Demario, C.L., Miranda, P.A.V.: Image segmentation by relaxed deep extreme cut with connected extreme points. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 441–453. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_32

    Chapter  Google Scholar 

  26. Phuah, C.L., Chen, Y., Strain, J.F., Yechoor, N., Laurido-Soto, O.J., Ances, B.M., et al.: Association of data-driven white matter hyperintensity spatial signatures with distinct cerebral small vessel disease etiologies. Neurology 99(23), e2535–e2547 (2022)

    Article  Google Scholar 

  27. Rani, V., Nabi, S.T., Kumar, M., Mittal, A., Kumar, K.: Self-supervised learning: a succinct review. Arch. Comput. Methods Eng. 30(4), 2761–2775 (2023)

    Article  Google Scholar 

  28. Raza, K., Singh, N.K.: A tour of unsupervised deep learning for medical image analysis. Curr. Med. Imaging 17(9), 1059–1077 (2021)

    Google Scholar 

  29. Sampath, A., Bijapur, P., Karanam, A., Umadevi, V., Parathodiyil, M.: Estimation of rooftop solar energy generation using satellite image segmentation. In: 2019 IEEE 9th International Conference on Advanced Computing (IACC), pp. 38–44 (2019)

    Google Scholar 

  30. Sofiiuk, K., Petrov, I.A., Konushin, A.: Reviving iterative training with mask guidance for interactive segmentation. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3141–3145. IEEE (2022)

    Google Scholar 

  31. Vercio, L.L., et al.: Supervised machine learning tools: a tutorial for clinicians. J. Neural Eng. 17(6), 062001 (2020)

    Article  Google Scholar 

  32. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.: Deep GrabCut for object selection. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 182.1–182.12. BMVA Press, September 2017

    Google Scholar 

  33. Yasuda, Y.D., Cappabianco, F.A., Martins, L.E.G., Gripp, J.A.: Automated visual inspection of aircraft exterior using deep learning. In: Anais Estendidos do XXXIV Conference on Graphics, Patterns and Images, pp. 173–176. SBC (2021)

    Google Scholar 

  34. Yu, X., Ye, X., Gao, Q.: Pipeline image segmentation algorithm and heat loss calculation based on gene-regulated apoptosis mechanism. Int. J. Press. Vessels Pip. 172, 329–336 (2019)

    Article  Google Scholar 

  35. Zeng, R., Wen, Y., Zhao, W., Liu, Y.J.: View planning in robot active vision: a survey of systems, algorithms, and applications. Comput. Visual Media 6, 225–245 (2020)

    Article  Google Scholar 

  36. Zhang, M., Zhou, Y., Zhao, J., Man, Y., Liu, B., Yao, R.: A survey of semi-and weakly supervised semantic segmentation of images. Artif. Intell. Rev. 53, 4259–4288 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo André Vechiatto Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Santos, L.F.D., de Souza Kleine, F.A., Miranda, P.A.V. (2024). Image Segmentation by Hierarchical Layered Oriented Image Foresting Transform Subject to Closeness Constraints. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57793-2_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57792-5

  • Online ISBN: 978-3-031-57793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics