Skip to main content

A Survey on 2D Euclidean Curve Classes in Discrete Geometry with New Results

  • Conference paper
Discrete Geometry and Mathematical Morphology (DGMM 2024)

Abstract

Classes of curves like par-regularity, \(\mu \)-reach, locally turn boundedness, quasi-regularity (and their generalizations) have been defined so as to guarantee geometrical or topological properties under discretization. An overview of their inter-relations is given. A focus is made on the Locally Turn Bounded (LTB) curves, a class having good discretization properties. It has already been shown that being LTB implies quasi-regularity. In this paper, it is shown that the LTB curves have a positive \(\mu \)-reach. Moreover, we show that a LTB curve having a Lipschitz turn is par-regular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrov, A.D., Reshetnyak, Y.G.: General Theory of Irregular Curves. Mathematics and Its Applications, vol. 29. Springer, Dordrecht (1989). https://doi.org/10.1007/978-94-009-2591-5

    Book  Google Scholar 

  2. Chazal, F., Cohen-Steiner, D., Lieutier, A., Thibert, B.: Stability of curvature measures. Comput. Graph. Forum 28(5), 1485–1496 (2009). https://doi.org/10.1111/j.1467-8659.2009.01525.x

    Article  Google Scholar 

  3. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space. Discr. Comput. Geom. 41(3), 461–479 (2009)

    Article  Google Scholar 

  4. Coeurjolly, D., Lachaud, J.O., Gueth, P.: Digital surface regularization with guarantees. IEEE Trans. Vis. Comput. Graph. 27(6), 2896–2907 (2021)

    Article  Google Scholar 

  5. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–418 (1959)

    Article  MathSciNet  Google Scholar 

  6. Gross, A., Latecki, L.: Digitizations preserving topological and differential geometric properties. Comput. Vis. Image Underst. 62(3), 370–381 (1995)

    Article  Google Scholar 

  7. Lachaud, J.O., Thibert, B.: Properties of gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016)

    Article  MathSciNet  Google Scholar 

  8. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 29 (1998)

    Google Scholar 

  9. Le Quentrec, E., Mazo, L., Baudrier, E., Tajine, M.: Local turn-boundedness: a curvature control for a good digitization. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) 21st IAPR International Conference on Discrete Geometry for Computer Imagery, Paris, France (2019)

    Google Scholar 

  10. Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M.: Local turn-boundedness: a curvature control for continuous curves with application to digitization. J. Math. Imaging Vis. 62, 673–692 (2020)

    Article  MathSciNet  Google Scholar 

  11. Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M.: Locally turn-bounded curves are quasi-regular. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 202–214. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_14

    Chapter  Google Scholar 

  12. Le Quentrec, E., Mazo, L., Baudrier, É., Tajine, M.: LTB curves with Lipschitz turn are par-regular. Research Report, Laboratoire ICube, université de Strasbourg (2021)

    Google Scholar 

  13. Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M.: Monotonic sampling of a continuous closed curve with respect to its gauss digitization: application to length estimation. J. Math. Imaging Vis. 64, 869–891 (2022)

    Article  MathSciNet  Google Scholar 

  14. Meine, H., Köthe, U., Stelldinger, P.: A topological sampling theorem for Robust boundary reconstruction and image segmentation. Discr. Appl. Math. 157(3), 524–541 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Convexity invariance of voxel objects under rigid motions. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1157–1162. IEEE, Beijing (2018)

    Google Scholar 

  16. Passat, N., Kenmochi, Y., Ngo, P., Pluta, K.: Rigid motions in the cubic grid: a discussion on topological issues. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 127–140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_11

    Chapter  Google Scholar 

  17. Passat, N., Ngo, P., Kenmochi, Y., Talbot, H.: Homotopic affine transformations in the 2D cartesian grid. J. Math. Imaging Vis. 64(7), 786–806 (2022)

    Article  MathSciNet  Google Scholar 

  18. Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-93208-3

    Book  Google Scholar 

  19. Serra, J.P.: Image Analysis and Mathematical Morphology. Academic Press, London, New York (1982)

    Google Scholar 

  20. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  21. Stelldinger, P.: Digitization of non-regular shapes. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30, pp. 269–278. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3443-1_24

    Chapter  Google Scholar 

  22. Stelldinger, P., Latecki, L., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Étienne Le Quentrec or Étienne Baudrier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Le Quentrec, É., Baudrier, É., Jacquot, C. (2024). A Survey on 2D Euclidean Curve Classes in Discrete Geometry with New Results. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57793-2_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57792-5

  • Online ISBN: 978-3-031-57793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics