Skip to main content

Mathematical Morphology Applied to Feature Extraction in Music Spectrograms

  • Conference paper
Discrete Geometry and Mathematical Morphology (DGMM 2024)

Abstract

Mathematical Morphology has proven to be a powerful tool for extracting geometric information from greyscale images. In this paper, we demonstrate its application to spectrograms (two-dimensional greyscale images of sound) of music excerpts. The sounds of musical instruments exhibit particular shapes when represented as a spectrogram. These shapes are determined by the sound characteristics. In general, musical sounds contain three different components: the attack component, appearing as vertical lines; the sustain component, appearing as horizontal lines; and the stochastic component, appearing as a landscape of hills and holes. In this paper we propose a pipeline of morphological operators to separate these three components. This separation allows us to build a new sound similar to the input one.

This work was partly supported by the chair of I. Bloch in Artificial Intelligence (Sorbonne Université and SCAI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    In the experiments exposed in this work, we chose a 10 ms step for time and a \(\frac{44100}{4096}\approx \) 10.77 Hz step for frequency. These values are common values for music applications.

  2. 2.

    These continuous values are sampled according to the grid, and become \(7\times 3\) in our case.

References

  1. Amatriain, X., Bonada, J., Loscos, A., Serra, X.: Spectral processing. In: DAFX, chap. 10, pp. 373–438. Wiley (2002)

    Google Scholar 

  2. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–944. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_14

    Chapter  Google Scholar 

  3. Cadore, J., Gallardo-Antolín, A., Peláez-Moreno, C.: Morphological processing of spectrograms for speech enhancement. In: Travieso-González, C.M., Alonso-Hernández, J.B. (eds.) NOLISP 2011. LNCS, vol. 7015, pp. 224–231. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25020-0_29

    Chapter  Google Scholar 

  4. Couprie, M., Bezerra, F.N., Bertrand, G.: Topological operators for grayscale image processing. J. Electron. Imaging 10(4), 1003–1015 (2001)

    Article  Google Scholar 

  5. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  6. Guimarães, S.J.F., Couprie, M., de Albuquerque Araújo, A., Jerônimo Leite, N.: Video segmentation based on 2D image analysis. Pattern Recogn. Lett. 24, 947–957 (2003)

    Google Scholar 

  7. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020)

    Article  Google Scholar 

  8. Keiler, F., Marchand, S.: Survey on extraction of sinusoids in stationary sounds. In: Digital Audio Effects (DAFx) Conference, Germany, pp. 51–58 (2002)

    Google Scholar 

  9. Klapuri, A., Davy, M.: Signal Processing Methods for Music Transcription. Springer, Cham (2007)

    Google Scholar 

  10. Naegel, B., Passat, N., Ronse, C.: Grey-level hit-or-miss transforms—part I: unified theory. Pattern Recogn. 40(2), 635–647 (2007)

    Article  Google Scholar 

  11. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. Wiley-ISTE, London (2010)

    Google Scholar 

  12. Romero-García, G., Agón, C., Bloch, I.: Estimation de paramètres de resynthèse de sons d’instruments de musique avec des outils de morphologie mathématique. In: 19th Sound and Music Computing Conference, Zenodo, Saint-Etienne, France, pp. 653–662 (2022)

    Google Scholar 

  13. Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology: II. Openings and closings. CVGIP: Image Underst. 54(1), 74–97 (1991)

    Article  Google Scholar 

  14. Salamon, J., Gomez, E.: Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Trans. Audio Speech Lang. Process. 20(6), 1759–1770 (2012)

    Article  Google Scholar 

  15. Serra, X.: Musical sound modeling with sinusoids plus noise. In: Musical Signal Processing, pp. 91–122. Routledge, New York (1997)

    Google Scholar 

  16. Serra, X., Smith, J.: Spectral modeling synthesis: a sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Comput. Music J. 14(4), 12–24 (1990)

    Article  Google Scholar 

  17. Steinberg, R., O’Shaughnessy, D.: Segmentation of a speech spectrogram using mathematical morphology. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1637–1640 (2008)

    Google Scholar 

  18. Verma, T.S., Meng, T.H.Y.: Extending spectral modeling synthesis with transient modeling synthesis. Comput. Music J. 24(2), 47–59 (2000)

    Article  Google Scholar 

  19. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  20. Virtanen, T., Klapuri, A.: Separation of harmonic sound sources using sinusoidal modeling. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. II765–II768 (2000)

    Google Scholar 

  21. Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  22. Xu, S., et al.: A mathematical morphological processing of spectrograms for the tone of Chinese vowels recognition. Appl. Mech. Mater. 571–572, 665–671 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Romero-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Romero-García, G., Bloch, I., Agón, C. (2024). Mathematical Morphology Applied to Feature Extraction in Music Spectrograms. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57793-2_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57792-5

  • Online ISBN: 978-3-031-57793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics