Skip to main content

Digital Calculus Frameworks and Comparative Evaluation of Their Laplace-Beltrami Operators

  • Conference paper
Discrete Geometry and Mathematical Morphology (DGMM 2024)

Abstract

Defining consistent calculus frameworks on discrete meshes is useful for processing the geometry of meshes or model numerical simulations and variational problems onto them. However digital surfaces (boundary of voxels) cannot benefit directly from the classical mesh calculus frameworks, since their vertex and face geometry is too poor to capture the geometry of the underlying smooth Euclidean surface well enough. This paper proposes two new calculus frameworks dedicated to digital surfaces, which exploit a corrected normal field, in a manner similar to the recent digital calculus of [3]. First we build a corrected interpolated calculus by defining inner products with position and normal interpolation in the Grassmannian. Second we present a corrected finite element method which adapts the standard Finite Element Method with a corrected metric per element. Experiments show that these digital calculus frameworks seem to converge toward the continuous calculus, offer a valid alternative to classical mesh calculus, and induce effective tools for digital surface processing tasks.

This work was partly funded by StableProxies ANR-22-CE46-0006 research grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunge, A., Botsch, M.: A survey on discrete Laplacians for general polygonal meshes. Comput. Graph. Forum 42(2), 521–544 (2023)

    Article  Google Scholar 

  2. Caissard, T., Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Laplace-Beltrami operator on digital surfaces. J. Math. Imaging Vision 61(3), 359–379 (2019)

    Article  MathSciNet  Google Scholar 

  3. Coeurjolly, D., Lachaud, J.O.: A simple discrete calculus for digital surfaces. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) DGMM 2022. LNCS, vol. 13493, pp. 341–353. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19897-7_27

    Chapter  Google Scholar 

  4. Coeurjolly, D., Lachaud, J.O., Gueth, P.: Digital surface regularization with guarantees. IEEE Trans. Vis. Comput. Graph. 27(6), 2896–2907 (2021)

    Article  Google Scholar 

  5. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance computation. Commun. ACM 60(11), 90–99 (2017)

    Article  Google Scholar 

  6. De Goes, F., Butts, A., Desbrun, M.: Discrete differential operators on polygonal meshes. ACM Trans. Graph. (TOG) 39(4), 110–1 (2020)

    Google Scholar 

  7. de Goes, F., Desbrun, M., Meyer, M., DeRose, T.: Subdivision exterior calculus for geometry processing. ACM Trans. Graph. 35(4), 1–11 (2016)

    Article  Google Scholar 

  8. Hildebrandt, K., Polthier, K.: On approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces. In: Computer Graphics Forum (2011)

    Google Scholar 

  9. Hirani, A.N.: Discrete exterior calculus. Ph.D. thesis, USA (2003). aAI3086864

    Google Scholar 

  10. Lachaud, J.-O., Coeurjolly, D., Levallois, J.: Robust and convergent curvature and normal estimators with digital integral invariants. In: Najman, L., Romon, P. (eds.) Modern Approaches to Discrete Curvature. LNM, vol. 2184, pp. 293–348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58002-9_9

    Chapter  Google Scholar 

  11. Lachaud, J.O., Romon, P., Thibert, B.: Corrected curvature measures. Discrete Comput. Geom. 68(2), 477–524 (2022)

    Article  MathSciNet  Google Scholar 

  12. Lachaud, J.O., Romon, P., Thibert, B., Coeurjolly, D.: Interpolated corrected curvature measures for polygonal surfaces. Comput. Graph. Forum 39(5), 41–54 (2020)

    Article  Google Scholar 

  13. Lachaud, J.O., Thibert, B.: Properties of Gauss digitized shapes and digital surface integration. J. Math. Imaging Vision 54(2), 162–180 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lévy, B., Zhang, H.: Spectral mesh processing. In: ACM SIGGRAPH 2010 Courses, pp. 1–312 (2010)

    Google Scholar 

  15. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, GRAPHITE 2006, pp. 381–389. Association for Computing Machinery, New York (2006)

    Google Scholar 

  16. Reddy, J.N.: Introduction to the Finite Element Method. McGraw-Hill Education (2019)

    Google Scholar 

  17. Sorkine, O.: Laplacian mesh processing. In: Chrysanthou, Y., Magnor, M. (eds.) Eurographics 2005 - State of the Art Reports. The Eurographics Association (2005)

    Google Scholar 

  18. Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the French National Research Agency in the framework of the «France 2030» program (ANR-15-IDEX- 0002), by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and by the StableProxies project (ANR-22-CE46-0006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin Weill–Duflos , David Coeurjolly or Jacques-Olivier Lachaud .

Editor information

Editors and Affiliations

A Details on the Interpolated Corrected Calculus

A Details on the Interpolated Corrected Calculus

Let \(\sigma \) be a surfel aligned with x and y and with normal aligned with z. The flat operator has the following expression:

figure l

The metric matrix for 0-forms is defined as the matrix such that, for any bilinearly interpolated functions \(\phi ,\psi \), we obtain on surfel \(\sigma \) the scalar:

figure m

Let us now define weighted sums for components of \(\textbf{u}\) over the quad. We number the edges when turning along the boundary of the surfel \(\sigma \) from 0 to 3, such that edges 0, 1, 2, 3 connect vertex pairs \((\textbf{x}_{00},\textbf{x}_{10})\), \((\textbf{x}_{10},\textbf{x}_{11})\),\((\textbf{x}_{01},\textbf{x}_{11})\), \((\textbf{x}_{01},\textbf{x}_{00})\), respectively. We define

figure n

By integration of left-hand side, we obtain for a surfel with normal z:

$$\begin{aligned}\textbf{M}_0 = \frac{1}{144} \begin{bmatrix} \bar{\textbf{u}}^z_{00} &{} \bar{\textbf{u}}^z_{00,10} &{} 4 \bar{\textbf{u}}^z &{} \bar{\textbf{u}}^z_{01,00} \\ \bar{\textbf{u}}^z_{00,10} &{} \bar{\textbf{u}}^z_{10} &{} \bar{\textbf{u}}^z_{10,11} &{} 4 \bar{\textbf{u}}^z \\ 4 \bar{\textbf{u}}^z &{} \bar{\textbf{u}}^z_{10,11} &{} \bar{\textbf{u}}^z_{11} &{} \bar{\textbf{u}}^z_{11,01} \\ \bar{\textbf{u}}^z_{11,01} &{} 4 \bar{\textbf{u}}^z &{} \bar{\textbf{u}}^z_{11,01} &{} \bar{\textbf{u}}^z_{01} \end{bmatrix}\,. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Weill–Duflos, C., Coeurjolly, D., Lachaud, JO. (2024). Digital Calculus Frameworks and Comparative Evaluation of Their Laplace-Beltrami Operators. In: Brunetti, S., Frosini, A., Rinaldi, S. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2024. Lecture Notes in Computer Science, vol 14605. Springer, Cham. https://doi.org/10.1007/978-3-031-57793-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57793-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57792-5

  • Online ISBN: 978-3-031-57793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics