Abstract
Anomaly detection in attributed networks has been crucial in many critical domains and has gained significant attention in recent years. However, most existing methods fail to capture the complexity of anomalous patterns at different levels with suitable supervision signals. To address this issue, we propose a novel dual contrastive self-supervised learning method for attributed network anomaly detection. Specifically, our approach relies on two major components to determine the anomaly of nodes. The first component assesses self-consistency by determining whether a target node’s attributes are consistent with its contextual environment. The second component evaluates behavioral consistency by analyzing the relationships and interaction patterns between the target node and its one-hop neighbors, which determines if the behavior of these neighbors aligns with the expected pattern of the target node. Accordingly, our method designs two types of contrastive instance pairs to fully exploit the structural and attribute information for detecting anomalous nodes at different levels regarding two focused consistencies. This approach is more effective in detecting anomalies and mitigating the limitations of previous methods. We evaluated our method on six benchmark datasets, and the experimental results demonstrate the superiority of our methods against state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
Cheng, W., Zhang, K., Chen, H., Jiang, G., Chen, Z., Wang, W.: Ranking causal anomalies via temporal and dynamical analysis on vanishing correlations. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 805–814 (2016)
Cheng, Z., Wang, S., Zhang, P., Wang, S., Liu, X., Zhu, E.: Improved autoencoder for unsupervised anomaly detection. Int. J. Intell. Syst. 36(12), 7103–7125 (2021)
Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019)
Ding, Q., Katenka, N., Barford, P., Kolaczyk, E., Crovella, M.: Intrusion as (anti) social communication: characterization and detection. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 886–894 (2012)
Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5685–5689. IEEE (2020)
Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)
Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2020)
Jin, M., Liu, Y., Zheng, Y., Chi, L., Li, Y.F., Pan, S.: Anemone: graph anomaly detection with multi-scale contrastive learning. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3122–3126 (2021)
Jin, M., Zheng, Y., Li, Y.F., Gong, C., Zhou, C., Pan, S.: Multi-scale contrastive Siamese networks for self-supervised graph representation learning. arXiv preprint arXiv:2105.05682 (2021)
Li, J., Dani, H., Hu, X., Liu, H.: Radar: residual analysis for anomaly detection in attributed networks. In: IJCAI, pp. 2152–2158 (2017)
Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. 35, 857–876 (2021)
Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33, 2378–2392 (2021)
Pei, Y., Huang, T., van Ipenburg, W., Pechenizkiy, M.: ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks. Mach. Learn. 111(2), 519–541 (2022)
Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q.: Anomalous: a joint modeling approach for anomaly detection on attributed networks. In: IJCAI, pp. 3513–3519 (2018)
Perozzi, B., Akoglu, L.: Scalable anomaly ranking of attributed neighborhoods. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 207–215. SIAM (2016)
Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)
Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019)
Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolutional networks for graph-based semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10049–10057 (2021)
West, J., Bhattacharya, M.: Intelligent financial fraud detection: a comprehensive review. Comput. Secur. 57, 47–66 (2016)
Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)
Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Chen, Y.P.P.: Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Trans. Knowl. Data Eng. 35, 12220–12233 (2021)
Zhou, S., Tan, Q., Xu, Z., Huang, X., Chung, F.L.: Subtractive aggregation for attributed network anomaly detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3672–3676 (2021)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 62206107).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Xue, S., Kong, H., Wang, Q. (2024). Dual Contrastive Learning for Anomaly Detection in Attributed Networks. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-57808-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57807-6
Online ISBN: 978-3-031-57808-3
eBook Packages: Computer ScienceComputer Science (R0)