Skip to main content

More Teachers Make Greater Students: Compression of CycleGAN

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 703))

Included in the following conference series:

  • 42 Accesses

Abstract

Generative Adversarial Networks (GANs) have obtained outstanding performance in image-to-image translation. Nevertheless, their applications are greatly limited due to high computational costs. Although past work on compressed GANs has yielded rich results, most still come at the expense of image quality. Therefore, in order to generate high-quality images and simplify the process of distillation, we propose a framework with more generators and fewer discriminators (MGFD) strategy to enhance the online knowledge distillation with high-quality images. First, we introduce the Inception-enhanced residual block into our enhanced teacher generator, which significantly improves image quality at a low cost. Then, the multi-granularity online knowledge distillation method is adopted and simplified by selecting wider Inception-enhanced teacher generator. In addition, we also combine the intermediate layer distillation losses to help student generator to obtain diverse features and more supervised signals from the intermediate layer for better transformations. Experiments demonstrate that our framework can significantly reduce computational costs and generate more natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  2. Li, S., Wu, J., Xiao, X., Chao, F., Mao, X., Ji, R.: Revisiting discriminator in gan compression: a generator-discriminator cooperative compression scheme. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 28560–28572. Curran Associates, Inc. (2021)

    Google Scholar 

  3. Hu, T., Lin, M., You, L., Chao, F., Ji, R.: Discriminator-cooperated feature map distillation for gan compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20351–20360 (2023)

    Google Scholar 

  4. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  5. Chen, H., et al.: Distilling portable generative adversarial networks for image translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3585–3592 (2020)

    Google Scholar 

  6. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: hardware-aware automated quantization with mixed precision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  7. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015)

  8. Shu, H., et al.: Co-evolutionary compression for unpaired image translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  9. Wang, H., Gui, S., Yang, H., Liu, J., Wang, Z.: GAN slimming: all-in-One GAN compression by a unified optimization framework. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 54–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_4

    Chapter  Google Scholar 

  10. Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6793–6803 (2021)

    Google Scholar 

  11. Lv, L.: Research and Implementation of Image-to-Image Translation Based on CycleGAN. Master’s thesis, Shandong University (2023)

    Google Scholar 

  12. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  13. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  14. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 31 (2017)

    Google Scholar 

  15. Jin, Q., et al.: Teachers do more than teach: Compressing image-to-image models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13600–13611 (2021)

    Google Scholar 

  16. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  17. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II, pp. 694–711. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  20. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  21. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  22. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  23. Li, Z., Jiang, R., Aarabi, P.: Semantic relation preserving knowledge distillation for image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020, pp. 648–663. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  24. Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J.Y., Han, S.: Gan compression: efficient architectures for interactive conditional gans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  25. Wang, J., Shu, H., Xia, W., Yang, Y., Wang, Y.: Coarse-to-fine searching for efficient generative adversarial networks. arXiv preprint arXiv:2104.09223 (2021)

  26. Li, S., Lin, M., Wang, Y., Chao, F., Shao, L., Ji, R.: Learning efficient gans for image translation via differentiable masks and co-attention distillation. IEEE Trans. Multimedia 25, 3180–3189 (2023). https://doi.org/10.1109/TMM.2022.3156699

    Article  Google Scholar 

  27. Zhang, L., Chen, X., Tu, X., Wan, P., Xu, N., Ma, K.: Wavelet knowledge distillation: Towards efficient image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12464–12474 (2022)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper is supported by the Shandong Province Key Innovation Project Grant No.2021SFGC0701 and Grant No.2020CXGC010903. We also would like to thank “Qingdao AI Computing Center” and “Eco-Innovation Center” for providing inclusive computing power and technical support of MindSpore during the completion of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Lv, L., Liu, J., Han, Y., Liang, M., Jiang, X. (2024). More Teachers Make Greater Students: Compression of CycleGAN. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics