Skip to main content

Hybrid Integrated Dimensionality Reduction Method Based on Conformal Homeomorphism Mapping

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 703))

Included in the following conference series:

  • 43 Accesses

Abstract

Based on the theories of Riemannian surface, Topology and Analytic function, a novel method for dimensionality reduction is proposed in this paper. This approach utilizes FCA to merge highly correlated features to obtain approximate independent new features in the locally, and establishes a conformal homomorphic function to realize global dimensionality reduction for text data with the manifold embed in the Hausdorff space. During the process of dimensionality reduction, the geometric topological structure information of the original data is preserved through conformal homomorphism function. This method is characterized by its simplicity, effectiveness, low complexity, and it avoids the neighbor problem in nonlinear dimensionality reduction and it is conducive to the outlier data. Moreover, it has extensible for new text vectors and new feature from sub-vectors of new text vectors, and incremental operation without involving existing documents. The mapping function exhibits desirable properties resulting in stable, reliable, and interpretable dimensionality reduction outcomes. Experimental results on both construction laws and regulations dataset and toutiao text dataset demonstrate that this dimensionality reduction technique is effective when combined with the typical classification method of Random Forest, Support Vector Machine, and Feedforward Neural Network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Beattie, J.R., Esmonde-White, F.S.W.L.: Exploration of principal component analysis: deriving principal component analysis visually using spectra. Appl. Spectroscopy 75(4), 361–375 (2021)

    Article  Google Scholar 

  2. Gardner-Lubbe, S.: Linear discriminant analysis for multiple functional data analysis. J. Appl. Stat. 48(11), 1917–1944 (2021)

    Article  MathSciNet  Google Scholar 

  3. Dehak, N.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2010)

    Article  Google Scholar 

  4. Tharwat, A.: Independent component analysis: an introduction. Appl. Comput. Inform. 17(2), 222–249 (2021)

    Article  Google Scholar 

  5. Genggeng, L., Lin, X., Chihua, C.: Unsupervised text feature learning via deep variational auto-encoder. Inf. Technol. Control 49(3), 421–437 (2020)

    Article  Google Scholar 

  6. Moreira, L.A.S., Justel, C.M., de Oliveira, J.C., et al.: Development of a method for data dimensionality reduction in loop closure detection: an incremental approach. Robotica 39(4), 557–571 (2021)

    Article  Google Scholar 

  7. Bickel, P.J., Kur, G., Nadler, B.: Projection pursuit in high dimensions. Pro. Natl. Acad. Sci. USA 115(37), 9151–9156 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ingwer, B., Patrick, J.F.G.: Modern Multidimensionality Scaling: Theory and Application. Springer, New York (1997)

    Google Scholar 

  9. Tenenbaum, J.B., de Vin, S., John, C.L.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)

    Article  Google Scholar 

  10. Sam, T.R., Lawrence, K.S.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  11. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2023)

    Article  Google Scholar 

  12. He, X., Niyogi, P.: Locality preserving projections. Adv. Neural. Inf. Process. Syst. 16, 153–160 (2003)

    Google Scholar 

  13. Wu, T., Xiao, Y., Guo, M., Nie, F.: A general framework for dimensionality reduction of k-means clustering. J. Classif. 37(3), 616–631 (2019). https://doi.org/10.1007/s00357-019-09342-4

    Article  MathSciNet  Google Scholar 

  14. Junjun, P., Ng, M.K.: Coseparable nonnegative matrix factorization. SIAM J. Matrix Anal. Appl. 44(3), 1393–1420 (2023)

    Article  MathSciNet  Google Scholar 

  15. Zheng, X.H., Ma, Z.M., Che, H.J., et al.: HSIC regularized manifold learning. J. Intell. Fuzzy Syst. 36(6), 5547–5558 (2019)

    Article  Google Scholar 

  16. Shuzhi, S.G., Hongsheng, H., Chengyao, S.: Geometrically local embedding in manifolds for dimension reduction. Pattern Recogn. 45(4), 1455–1470 (2012)

    Article  Google Scholar 

  17. Yang, J.: KPCA plus LDA: a complete kernel Fisher discriminate framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 230–244 (2005)

    Article  Google Scholar 

  18. Cambria, E., Mazzocco, T., Hussain, A.: Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining. Biol Inspir Cognit. Arch. 4, 41–53 (2013)

    Google Scholar 

  19. Andrew, L., Harli, L., Jose, A., et al.: O(k)-Equivariant Dimensionality Reduction on Stiefel Manifolds. arXiv:2309.10775, https://arxiv.org/abs/2309.10775

  20. Canyao, L., Jujian, L., Huimin, Z., et al.: Dimensionality reduction with extreme learning machine based on manifold preserving. In: 10th International Conference on Brain Inspired Cognitive Systems, pp. 128–138. Elsevier Rio Grande do Norte, Brazil (2021)

    Google Scholar 

  21. ShiZhong, L., XiaoJun, J., SuLei, Z.: The application study of entropy analysis method in feature extraction. J. North China Inst. Technol. 20(3), 278–281 (1999)

    Google Scholar 

  22. Rui, H., Mingyi, H., Saojun, Y.: A margin based feature extraction algorithm for the small sample size problem. Chin. J. Comput. 30(7), 1173–1178 (2007)

    Google Scholar 

  23. Daubechies, I.: The Wavelet Transform, Time-Frequency Localization and Signal Analysis. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  24. Shuyin, X., Cheng, W., Guoyin, W., et al.: A Unified Granular-ball Learning Model of Pawlak Rough Set and Neighborhood Rough Set. arXiv:2201.03349, https://arxiv.org/abs/2201.03349

  25. Xingrui, Y., Shouwei, Z., Ruxue, Z., et al.: BiLSTM-attention text classification model of improved BERT word vector. Transducer Microsyst. Technol. 42(10), 160–164 (2023)

    Google Scholar 

  26. Jaffe, A., Kluger, Y., Lindenbaum, O.: The spectral underpinning of word2vec. Front. Appl. Math. Stat. 6(3), 1–24 (2020)

    Google Scholar 

  27. Ketineni, S., Sheela, J.: Metaheuristic aided improved LSTM for multi-document summarization: a hybrid optimization model. J. Web Eng. 22(4), 701–730 (2023)

    Google Scholar 

  28. Gustave, C.: Cours d’topology. Higher Education Press, Beijing (2009)

    Google Scholar 

  29. Shichang, S.: Popular in the Modern Mathematical Theory. Shaanxi Science and Technology Press, Shaanxi (2000)

    Google Scholar 

  30. Daren, W.: Lectures on Differential Geometry. People’s Education Press, Beijing (1981)

    Google Scholar 

  31. Munkres, J.R.: Topology. 2nd ed., China Machine Press, Beijing (2006)

    Google Scholar 

  32. Saff, E.B., Snider, A.D.: Fundamentals of Complex Analysis with Applications to Engineering and Science, 3rd ed. China Machine Press, Beijing (2004)

    Google Scholar 

  33. Bianping, S., Dongli, C.: Complex Functions and Integral Transformations. Higher Education Press, Beijing (2022)

    Google Scholar 

  34. Simon, D.: Riemann Surface. Oxford University Press, Britain (2011)

    Google Scholar 

  35. Github. https://github.com/aceimnorstuvwxz/toutiao-text-classfication-dataset. Accessed 08 Jan 2024

Download references

Acknowledgments

This research was supported by Special Projects in Key Areas for General Universities in Guangdong Province (2021ZDZX1077); Natural Science Foundation of Guangdong Province of China with (2020A1515010784); Guangdong University of Science & Technology Quality Project Editor (GKZLGC2022255); Guangdong University of Science & Technology Innovation and Improvement Project (GKY2022CQTD2); Innovation and Improvement School Project from Guangdong University of Science & Technology (GKY-2019CQYJ-3); Also supported by Social Sciences Project of Guangdong University of Science & Technology (GKY-2023KYZDW-6).

The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bianping Su , Longqing Zhang or Jiao Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, B. et al. (2024). Hybrid Integrated Dimensionality Reduction Method Based on Conformal Homeomorphism Mapping. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics