Abstract
Although Pre-trained Language Model (PLM) ChatGPT as a Question-Answering System (QAS) is so successful, it is still necessary to study further the QASs based on PLMs. In this paper, we survey state-of-the-art systems of this kind, identify the issues that current researchers are concerned about, explore various PLM-based methods for addressing them, and compare their pros and cons. We also discuss the datasets used for fine-tuning the corresponding PLMs and evaluating these PLM-based methods. Moreover, we summarise the criteria for evaluating these methods and compare their performance against these criteria. Finally, based on our analysis of the state-of-the-art PLM-based methods for QA, we identify some challenges for future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abacha, A.B., Agichtein, E., Pinter, Y., Demner-Fushman, D.: Overview of the medical question answering task at TREC 2017 LiveQA. In: TREC, pp. 1–12 (2017)
Abacha, A.B., Shivade, C., Demner-Fushman, D.: Overview of the MEDIQA 2019 shared task on textual inference, question entailment and question answering. In: Proceedings of the 18th BioNLP Workshop and Shared Task, pp. 370–379 (2019)
Alzubi, J.A., Jain, R., Singh, A., Parwekar, P., Gupta, M.: COBERT: COVID-19 question answering system using BERT. Arabian Journal for Science and Engineering, pp. 1–11 (2021)
Artetxe, M., Ruder, S., Yogatama, D.: On the cross-lingual transferability of monolingual representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4623–4637 (2020)
Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1533–1544 (2013)
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)
Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Chada, R., Natarajan, P.: FewshotQA: a simple framework for few-shot learning of question answering tasks using pre-trained text-to-text models. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6081–6090 (2021)
Chen, W., Verga, P., de Jong, M., Wieting, J., Cohen, W.: Augmenting pre-trained language models with QA-memory for open-domain question answering. arXiv preprint arXiv:2204.04581 (2022)
Choi, E., et al.: QuAc: question answering in context. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2174–2184 (2018)
Choi, S., .: DramaQA: character-centered video story understanding with hierarchical QA. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1166–1174 (2021)
Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N.A., Gardner, M.: A dataset of information-seeking questions and answers anchored in research papers. arXiv preprint arXiv:2105.03011 (2021)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)
Do, P., Phan, T.H.: Developing a BERT based triple classification model using knowledge graph embedding for question answering system. Appl. Intell. 52(1), 636–651 (2022)
Duan, K., Du, S., Zhang, Y., Lin, Y., Wu, H., Zhang, Q.: Enhancement of question answering system accuracy via transfer learning and BERT. Appl. Sci. 12(22), 11522 (2022)
Duan, N.: Overview of the NLPCC-ICCPOL 2016 shared task: open domain Chinese question answering. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 942–948. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_89
Duan, X., et al.: CJRC: a reliable human-annotated benchmark dataset for Chinese judicial reading comprehension. In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 2019. LNCS (LNAI), vol. 11856, pp. 439–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32381-3_36
Dubey, M., Banerjee, D., Abdelkawi, A., Lehmann, J.: LC-QuAD 2.0: a large dataset for complex question answering over Wikidata and DBpedia. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 69–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_5
Evseev, D., Arkhipov, M.Y.: SPARQL query generation for complex question answering with BERT and BiLSTM-based model. Comput. Linguist. Intellect. Technol. 19(26), 270–282 (2020)
Fan, A., Jernite, Y., Perez, E., Grangier, D., Weston, J., Auli, M.: ELI5: long form question answering (2019). arXiv preprint arXiv:1907.09190
Ferguson, J., Gardner, M., Hajishirzi, H., Khot, T., Dasigi, P.: IIRC: a dataset of incomplete information reading comprehension questions. arXiv preprint arXiv:2011.07127 (2020)
Fisch, A., Talmor, A., Jia, R., Seo, M., Choi, E., Chen, D.: MRQA 2019 shared task: evaluating generalization in reading comprehension. In: Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pp. 1–13 (2019)
Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., Berant, J.: Did aristotle use a laptop? A question answering benchmark with implicit reasoning strategies. Trans. Assoc. Comput. Linguist. 9, 346–361 (2021)
Gupta, D., Kumari, S., Ekbal, A., Bhattacharyya, P.: MMQA: a multi-domain multi-lingual question-answering framework for English andHindi. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation, pp. 2777–2784 (2018)
Gupta, S., Khade, N.: BERT based multilingual machine comprehension in English and Hindi (2020). arXiv preprint arXiv:2006.01432
Guven, Z.A., Unalir, M.O.: Natural language based analysis of SQuAD: an analytical approach for BERT. Expert Syst. Appl. 195, 116592 (2022)
Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611 (2017)
Khazaeli, S., et al.: A free format legal question answering system. In: Proceedings of the Natural Legal Language Processing Workshop 2021, pp. 107–113 (2021)
Khorashadizadeh, H., Monsefi, R., Foolad, S.: Attention-based convolutional neural network for answer selection using BERT. In: 2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems, pp. 121–126. IEEE (2020)
Kwiatkowski, T., et al.: Natural questions: a benchmark for question answering research. Trans. Assoc. Comput. Linguist. 7, 453–466 (2019)
Lee, D., Choi, S., Jang, Y., Zhang, B.T.: Mounting video metadata on transformer-based language model for open-ended video question answering. arXiv preprint arXiv:2108.05158 (2021)
Liu, S., Huang, X.: A Chinese question answering system based on GPT. In: 2019 IEEE 10th International Conference on Software Engineering and Service Science, pp. 533–537. IEEE (2019)
Marino, K., Rastegari, M., Farhadi, A., Mottaghi, R.: OK-VQA: a visual question answering benchmark requiring external knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3195–3204 (2019)
Miller, G.A.: WordNet: a lexical database forEnglish. Commun. ACM 38(11), 39–41 (1995)
Nakano, R., et al.: WebGPT: browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332 (2021)
Pereira, J., Fidalgo, R., Lotufo, R., Nogueira, R.: Visconde: Multi-document QA with GPT-3 and neural reranking. arXiv preprint arXiv:2212.09656 (2022)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018). https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)
Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable questions for SQuAD. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 784–789 (2018)
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392 (2016)
Tan, Y., Min, D., Li, Y., Li, W., Hu, N., Chen, Y., Qi, G.: Evaluation of ChatGPT as a question answering system for answering complex questions (2023). arXiv preprint arXiv:2303.07992
Trang, N.T.M., Shcherbakov, M.: Vietnamese question answering system from multilingual BERT models to monolingual BERT model. In: 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), pp. 201–206. IEEE (2020)
Trischler, A., et al.: NewsQA: a machine comprehension dataset. In: Proceedings of the 2nd Workshop on Representation Learning for NLP, pp. 191–200 (2017)
Trivedi, H., Balasubramanian, N., Khot, T., Sabharwal, A.: MuSiQue: multihop questions via single-hop question composition. Trans. Assoc. Comput. Linguist. 10, 539–554 (2022)
Wang, H., Wu, H., Zhu, H., Miao, Y., Wang, Q., Qiao, S., Zhao, H., Chen, C., Zhang, J.: A residual LSTM and Seq2Seq neural network based on GPT for Chinese rice-related question and answer system. Agriculture 12(6), 813 (2022)
Widad, A., El Habib, B.L., et al.: BERT for question answering applied on COVID-19. Procedia Comput. Sci. 198, 379–384 (2022)
Wu, J., Liu, J., Luo, X.: Few-shot legal knowledge question answering system for COVID-19 epidemic. In: 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence, pp. 1–6 (2020)
Yang, W., et al.: End-to-end open-domain question answering with BERTserini. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 72–77 (2019)
Yang, Y., Yih, W.t., Meek, C.: WIKIQA: a challenge dataset for open-domain question answering. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2013–2018 (2015)
Yang, Z., et al.: An empirical study of GPT-3 for few-shot knowledge-based VQA. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3081–3089 (2022)
Yang, Z., et al.: HotpotQA: a dataset for diverse, explainable multi-hop question answering. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–2380 (2018)
Yin, J.: Research on question answering system based on BERT model. In: 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications, pp. 68–71. IEEE (2022)
Yoon, W., Lee, J., Kim, D., Jeong, M., Kang, J.: Pre-trained language model for biomedical question answering. In: Cellier, P., Driessens, K. (eds.) ECML PKDD 2019. CCIS, vol. 1168, pp. 727–740. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43887-6_64
Zaib, M., Tran, D.H., Sagar, S., Mahmood, A., Zhang, W.E., Sheng, Q.Z.: BERT-CoQAC: BERT-based conversational question answering in context. In: Ning, L., Chau, V., Lau, F. (eds.) PAAP 2020. CCIS, vol. 1362, pp. 47–57. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0010-4_5
Zhang, N.N., Xing, Y.: Questions and answers on legal texts based on BERT-BiGRU. J. Phys: Conf. Ser. 1828(1), 012035 (2021)
Zhao, X., Li, Z., Wu, S., Zhan, Y., Zhang, C.: Deep text matching in medical question answering system. In: ACM ICEA’21: Proceedings of the 2021 ACM International Conference on Intelligent Computing and Its Emerging Applications, pp. 134–138 (2021)
Zhou, S., Zhang, Y.: DATLMedQA: a data augmentation and transfer learning based solution for medical question answering. Appl. Sci. 11(23), 11251 (2021)
Zhu, J., Wu, J., Luo, X., Liu, J.: Semantic matching based legal information retrieval system for COVID-19 pandemic. Artificial Intelligence and Law, pp. 1–30 (2023)
Zihayat, M., Etwaroo, R.: A non-factoid question answering system for prior art search. Expert Syst. Appl. 177, 114910 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Luo, X., Luo, Y., Yang, B. (2024). Question Answering Systems Based on Pre-trained Language Models: Recent Progress. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-57808-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57807-6
Online ISBN: 978-3-031-57808-3
eBook Packages: Computer ScienceComputer Science (R0)