Abstract
As a special case of the multiobjective optimization problem, the multiobjective knapsack problem (MOKP) widely exists in real-world applications. Currently, most algorithms used to solve MOKPs assume that these problems involve only one decision maker (DM). However, some complex MOKPs often involve more than one decision makers and we call such problems multiparty multiobjective knapsack problems (MPMOKPs). Existing algorithms cannot solve MPMOKPs effectively. To the best of our knowledge, there is only a little attention paid to MPMOKPs. In this paper, inspired by existing SMS-EMOA, we propose a novel indicator-based algorithm called SMS-MPEMOA to solve MPMOKPs, which aims to search solutions to satisfy all decision makers as much as possible. SMS-MPEMOA is compared with several state-of-the-art multiparty multiobjective optimization algorithms (MPMOEAs) on the benchmarks and the experimental results demonstrate that SMS-MPEMOA is very competitive.
This study is supported by the National Natural Science Foundation of China (Grant No. U23B2058), Shenzhen Fundamental Research Program (Grant No. JCYJ20220818102414030), the Major Key Project of PCL (Grant No. PCL2022A03), Shenzhen Science and Technology Program (Grant No. ZDSYS20210623091809029), Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (Grant No. 2022B1212010005).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelaziz, F.B., Krichen, S., Chaouachi, J.: A hybrid heuristic for multiobjective knapsack problems. In: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 205–212 (1999)
Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multiobjective knapsack problem. Comput. Oper. Res. 36(1), 260–279 (2009)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems-an overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res., 105693 (2022)
Chabane, B., Basseur, M., Hao, J.K.: R2-IBMOLS applied to a practical case of the multiobjective knapsack problem. Expert Syst. Appl. 71, 457–468 (2017)
Chang, Y., Luo, W., Lin, X., She, Z., Shi, Y.: Multiparty multiobjective optimization by MOEA/D. In: Proceedings of 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 01–08. IEEE (2022)
Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–288 (1957)
Deb, K.: Introduction to evolutionary multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multi objective Optimization. LNCS, vol. 5252, pp. 59–96. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_3
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Denysiuk, R., Gaspar-Cunha, A., Delbem, A.C.: Neuroevolution for solving multiobjective knapsack problems. Expert Syst. Appl. 116, 65–77 (2019)
Erlebach, T., Kellerer, H., Pferschy, U.: Approximating Multi-objective Knapsack Problems. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 210–221. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6_20
Gandibleux, X., Freville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. J. Heurist. 6(3), 361–383 (2000)
Hu, Y., et al.: A two-archive model based evolutionary algorithm for multimodal multi-objective optimization problems. Appl. Soft Comput. 119, 108606 (2022)
Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2014)
Ishibuchi, H., Kaige, S., Narukawa, K.: Comparison between lamarckian and baldwinian repair on multiobjective 0/1 knapsack problems. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 370–385. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_26
Ishibuchi, H., Pang, L.M., Shang, K.: A new framework of evolutionary multi-objective algorithms with an unbounded external archive. Authorea Preprints (2023)
Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment. IEEE Trans. Evol. Comput. 6(4), 402–412 (2002)
Kahloul, S., Zouache, D., Brahmi, B., Got, A.: A multi-external archive-guided henry gas solubility optimization algorithm for solving multi-objective optimization problems. Eng. Appl. Artif. Intell. 109, 104588 (2022)
Liu, K., Li, K., Ma, H., Zhang, J., Peng, Q.: Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Convers. Manage. 159, 151–162 (2018)
Liu, W., Luo, W., Lin, X., Li, M., Yang, S.: Evolutionary approach to multiparty multiobjective optimization problems with common pareto optimal solutions. In: Proceedings of 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–9. IEEE (2020)
Lu, T.C., Yu, G.R.: An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems. Inf. Sci. 243, 39–56 (2013)
Luna, F., Zavala, G.R., Nebro, A.J., Durillo, J.J., Coello, C.A.C.: Solving a real-world structural optimization problem with a distributed SMS-EMOA algorithm. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 600–605. IEEE (2013)
Martins, M.S., Delgado, M.R., Santana, R., Lüders, R., Gonçalves, R.A., Almeida, C.P.D.: HMOBEDA: Hybrid multi-objective Bayesian estimation of distribution algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 357–364 (2016)
Neubauer, A.: Theory of the simple genetic algorithm with \(\alpha \)-selection, uniform crossover and bitwise mutation. WSEAS Trans Syst., ISSN 11092777, 989–998 (2010)
Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284 (2005)
Poli, R., Langdon, W.B.: A new schema theorem for genetic programming with one-point crossover and point mutation. Cognitive Science Research Papers-University of Birmingham CSRP (1997)
Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Proceedings of 2015 Latin American computing conference (CLEI), pp. 1–11. IEEE (2015)
She, Z., Luo, W., Chang, Y., Lin, X., Tan, Y.: A new evolutionary approach to multiparty multiobjective optimization. In: Tan, Y., Shi, Y. (eds.) ICSI 2021. LNCS, vol. 12690, pp. 58–69. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78811-7_6
Singh, N., Vardhan, M.: Computing optimal block size for blockchain based applications with contradictory objectives. Procedia Comput. Sci. 171, 1389–1398 (2020)
Soares, D., Arroyo, J.: A grasp algorithm for the multi-objective knapsack problem. In: Proceedings of XXIV International Conference of the Chilean Computer Science Society, Arica, Chile (2004)
Song, Z., Luo, W., Lin, X., She, Z., Zhang, Q.: On multiobjective knapsack problems with multiple decision makers. In: Proceedings of 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 156–163. IEEE (2022)
Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)
Wang, H., Peng, K., Zhao, B.: A multi-objective optimization method for latency-sensitive applications in MEC-enabled smart campus using SMS-EMOA. In: International Conference on Mobile Networks and Management, pp. 63–77. Springer (2022). https://doi.org/10.1007/978-3-031-32443-7_5
Wang, Z., Gong, M., Li, P., Gu, J., Tian, W.: A hypervolume distribution entropy guided computation resource allocation mechanism for the multiobjective evolutionary algorithm based on decomposition. Appl. Soft Comput. 116, 108297 (2022)
Yakici, E.: A multiobjective fleet location problem solved by adaptation of evolutionary algorithms NSGA-II and SMS-EMOA. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24(1), 94–100 (2018)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK report 103 (2001)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Song, Z., Luo, W., Xu, P., Ye, Z., Chen, K. (2024). An Indicator Based Evolutionary Algorithm for Multiparty Multiobjective Knapsack Problems. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-57808-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57807-6
Online ISBN: 978-3-031-57808-3
eBook Packages: Computer ScienceComputer Science (R0)