Skip to main content

An Indicator Based Evolutionary Algorithm for Multiparty Multiobjective Knapsack Problems

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 703))

Included in the following conference series:

  • 421 Accesses

Abstract

As a special case of the multiobjective optimization problem, the multiobjective knapsack problem (MOKP) widely exists in real-world applications. Currently, most algorithms used to solve MOKPs assume that these problems involve only one decision maker (DM). However, some complex MOKPs often involve more than one decision makers and we call such problems multiparty multiobjective knapsack problems (MPMOKPs). Existing algorithms cannot solve MPMOKPs effectively. To the best of our knowledge, there is only a little attention paid to MPMOKPs. In this paper, inspired by existing SMS-EMOA, we propose a novel indicator-based algorithm called SMS-MPEMOA to solve MPMOKPs, which aims to search solutions to satisfy all decision makers as much as possible. SMS-MPEMOA is compared with several state-of-the-art multiparty multiobjective optimization algorithms (MPMOEAs) on the benchmarks and the experimental results demonstrate that SMS-MPEMOA is very competitive.

This study is supported by the National Natural Science Foundation of China (Grant No. U23B2058), Shenzhen Fundamental Research Program (Grant No. JCYJ20220818102414030), the Major Key Project of PCL (Grant No. PCL2022A03), Shenzhen Science and Technology Program (Grant No. ZDSYS20210623091809029), Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (Grant No. 2022B1212010005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelaziz, F.B., Krichen, S., Chaouachi, J.: A hybrid heuristic for multiobjective knapsack problems. In: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 205–212 (1999)

    Google Scholar 

  2. Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multiobjective knapsack problem. Comput. Oper. Res. 36(1), 260–279 (2009)

    Article  MathSciNet  Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  Google Scholar 

  4. Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems-an overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res., 105693 (2022)

    Google Scholar 

  5. Chabane, B., Basseur, M., Hao, J.K.: R2-IBMOLS applied to a practical case of the multiobjective knapsack problem. Expert Syst. Appl. 71, 457–468 (2017)

    Article  Google Scholar 

  6. Chang, Y., Luo, W., Lin, X., She, Z., Shi, Y.: Multiparty multiobjective optimization by MOEA/D. In: Proceedings of 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 01–08. IEEE (2022)

    Google Scholar 

  7. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–288 (1957)

    Article  MathSciNet  Google Scholar 

  8. Deb, K.: Introduction to evolutionary multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multi objective Optimization. LNCS, vol. 5252, pp. 59–96. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3_3

    Chapter  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Denysiuk, R., Gaspar-Cunha, A., Delbem, A.C.: Neuroevolution for solving multiobjective knapsack problems. Expert Syst. Appl. 116, 65–77 (2019)

    Article  Google Scholar 

  11. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating Multi-objective Knapsack Problems. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 210–221. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6_20

    Chapter  Google Scholar 

  12. Gandibleux, X., Freville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. J. Heurist. 6(3), 361–383 (2000)

    Article  Google Scholar 

  13. Hu, Y., et al.: A two-archive model based evolutionary algorithm for multimodal multi-objective optimization problems. Appl. Soft Comput. 119, 108606 (2022)

    Article  Google Scholar 

  14. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2014)

    Article  Google Scholar 

  15. Ishibuchi, H., Kaige, S., Narukawa, K.: Comparison between lamarckian and baldwinian repair on multiobjective 0/1 knapsack problems. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 370–385. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_26

    Chapter  Google Scholar 

  16. Ishibuchi, H., Pang, L.M., Shang, K.: A new framework of evolutionary multi-objective algorithms with an unbounded external archive. Authorea Preprints (2023)

    Google Scholar 

  17. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment. IEEE Trans. Evol. Comput. 6(4), 402–412 (2002)

    Article  Google Scholar 

  18. Kahloul, S., Zouache, D., Brahmi, B., Got, A.: A multi-external archive-guided henry gas solubility optimization algorithm for solving multi-objective optimization problems. Eng. Appl. Artif. Intell. 109, 104588 (2022)

    Article  Google Scholar 

  19. Liu, K., Li, K., Ma, H., Zhang, J., Peng, Q.: Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Convers. Manage. 159, 151–162 (2018)

    Article  Google Scholar 

  20. Liu, W., Luo, W., Lin, X., Li, M., Yang, S.: Evolutionary approach to multiparty multiobjective optimization problems with common pareto optimal solutions. In: Proceedings of 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–9. IEEE (2020)

    Google Scholar 

  21. Lu, T.C., Yu, G.R.: An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems. Inf. Sci. 243, 39–56 (2013)

    Article  MathSciNet  Google Scholar 

  22. Luna, F., Zavala, G.R., Nebro, A.J., Durillo, J.J., Coello, C.A.C.: Solving a real-world structural optimization problem with a distributed SMS-EMOA algorithm. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 600–605. IEEE (2013)

    Google Scholar 

  23. Martins, M.S., Delgado, M.R., Santana, R., Lüders, R., Gonçalves, R.A., Almeida, C.P.D.: HMOBEDA: Hybrid multi-objective Bayesian estimation of distribution algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 357–364 (2016)

    Google Scholar 

  24. Neubauer, A.: Theory of the simple genetic algorithm with \(\alpha \)-selection, uniform crossover and bitwise mutation. WSEAS Trans Syst., ISSN 11092777, 989–998 (2010)

    Google Scholar 

  25. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284 (2005)

    Article  MathSciNet  Google Scholar 

  26. Poli, R., Langdon, W.B.: A new schema theorem for genetic programming with one-point crossover and point mutation. Cognitive Science Research Papers-University of Birmingham CSRP (1997)

    Google Scholar 

  27. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Proceedings of 2015 Latin American computing conference (CLEI), pp. 1–11. IEEE (2015)

    Google Scholar 

  28. She, Z., Luo, W., Chang, Y., Lin, X., Tan, Y.: A new evolutionary approach to multiparty multiobjective optimization. In: Tan, Y., Shi, Y. (eds.) ICSI 2021. LNCS, vol. 12690, pp. 58–69. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78811-7_6

    Chapter  Google Scholar 

  29. Singh, N., Vardhan, M.: Computing optimal block size for blockchain based applications with contradictory objectives. Procedia Comput. Sci. 171, 1389–1398 (2020)

    Article  Google Scholar 

  30. Soares, D., Arroyo, J.: A grasp algorithm for the multi-objective knapsack problem. In: Proceedings of XXIV International Conference of the Chilean Computer Science Society, Arica, Chile (2004)

    Google Scholar 

  31. Song, Z., Luo, W., Lin, X., She, Z., Zhang, Q.: On multiobjective knapsack problems with multiple decision makers. In: Proceedings of 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 156–163. IEEE (2022)

    Google Scholar 

  32. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  33. Wang, H., Peng, K., Zhao, B.: A multi-objective optimization method for latency-sensitive applications in MEC-enabled smart campus using SMS-EMOA. In: International Conference on Mobile Networks and Management, pp. 63–77. Springer (2022). https://doi.org/10.1007/978-3-031-32443-7_5

  34. Wang, Z., Gong, M., Li, P., Gu, J., Tian, W.: A hypervolume distribution entropy guided computation resource allocation mechanism for the multiobjective evolutionary algorithm based on decomposition. Appl. Soft Comput. 116, 108297 (2022)

    Article  Google Scholar 

  35. Yakici, E.: A multiobjective fleet location problem solved by adaptation of evolutionary algorithms NSGA-II and SMS-EMOA. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24(1), 94–100 (2018)

    MathSciNet  Google Scholar 

  36. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK report 103 (2001)

    Google Scholar 

  37. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  38. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  39. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Z., Luo, W., Xu, P., Ye, Z., Chen, K. (2024). An Indicator Based Evolutionary Algorithm for Multiparty Multiobjective Knapsack Problems. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics