Skip to main content

Ensemble Strategy Based Hyper-heuristic Evolutionary Algorithm for Many-Objective Optimization

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 703))

Included in the following conference series:

  • 39 Accesses

Abstract

Many-objective Optimization problems (MaOPs), with four or more objectives are difficult to solve, is a kind of common optimization problems in actual industrial production. In recent years, a large number of many-objective optimization algorithms (MaOEAs) have been proposed to solve various types of MaOPs. However, in practical problems, it is usually hard to improve the existing optimization algorithms or make a lot of attempts for MaOEAs because the true Pareto surface is usually unknown in a new MaOPs, which is a time-consuming and uncertain task. In this paper, inspired by the selective hyper heuristic optimization algorithm, we propose an integrated hyper-heuristic many-objective optimization algorithm (MaOEA-EH), which can integrate the existing advanced MaOEAs by simulating the PBFT consensus mechanism in the blockchain, and select the best algorithm for the current problem through the voting-election method in the iterative process. Numerical results show that our algorithm performs well on various many-objective problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wu, G.H., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms – a survey. Swarm Evol. Comput.Evol. Comput. 44, 695–711 (2018)

    Article  Google Scholar 

  2. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput.Evol. Comput. 15(1), 55–66 (2011)

    Article  Google Scholar 

  3. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput.Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  4. Liu, S., et al.: A self-guided reference vector strategy for many-objective optimization. IEEE Trans. Cybern. 52(2), 1164–1178 (2022)

    Article  Google Scholar 

  5. Wang, X.X., Li, C.J., Zhu, J.R., Meng, Q.X.: L-SHADE-E: ensemble of two differential evolution algorithms originating from L-SHADE. Inf. Sci. 552, 201–219 (2020)

    Article  MathSciNet  Google Scholar 

  6. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput.Evol. Comput. 13(2), 398–417 (2009). https://doi.org/10.1109/TEVC.2008.927706

    Article  Google Scholar 

  7. Mallipeddi, R., Suganthan, P.N., Pan, Q.K.: Mehmet fatih tasgetiren, differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput.Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  8. Mallipeddi, R., Mallipeddi, S., Suganthan, P.N.: Ensemble strategies with adaptive evolutionary programming. Inf. Sci. 180(9), 1571–1581 (2010)

    Article  Google Scholar 

  9. Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput.Evol. Comput. 14(4), 561–579 (2010)

    Article  Google Scholar 

  10. Qu, B.Y., Suganthan, P.N.: Constrained multi-objective optimization algorithm with ensemble of constraint handling methods. Eng. Optim.Optim. 43(4), 403–416 (2010)

    Article  MathSciNet  Google Scholar 

  11. Zhao, S.Z., Suganthan, P.N.: Multi-objective evolutionary algorithm with ensemble of external archives. Int. J. Innovative Comput. Inf. Control 6(4), 1713–1726 (2010)

    Google Scholar 

  12. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput.Evol. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  13. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc.Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  14. Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit, pp. 176–190. Practice and Theory of Automated Timetabling III, Springer (2001)

    Google Scholar 

  15. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for numerical optimization. IEEE Trans. Evol. Comput.Evol. Comput. 14(5), 782–800 (2010)

    Article  Google Scholar 

  16. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification of Hyper-Heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 449–468. Springer US, Boston, MA (2010). https://doi.org/10.1007/978-1-4419-1665-5_15

    Chapter  Google Scholar 

  17. Yue, W., Wang, Y.: A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A A 465, 124–140 (2017)

    Article  MathSciNet  Google Scholar 

  18. Sun, Y., Shao, Y.: Research on data security communication scheme of heterogeneous swarm robotics system in emergency scenarios. Sensors 22(16), 6082 (2022)

    Article  Google Scholar 

  19. Xu, G., Liu, Y., Khan, P.W.: Improvement of the DPoS consensus mechanism in blockchain based on vague sets. IEEE Trans. Industr. Inf.Industr. Inf. 16(6), 4252–4259 (2020)

    Article  Google Scholar 

  20. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput.Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  21. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.Evol. Comput. 17(5), 721–736 (2013)

    Article  Google Scholar 

  22. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.Evol. Comput. 19(6), 761–776 (2015)

    Article  Google Scholar 

  23. Yuan, Y., Xu, H., Wang, B.: Evolutionary many-objective optimization using ensemble fitness ranking. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 669–676 (2014)

    Google Scholar 

  24. Liang, Z., Hu, K., Ma, X., Zhu, Z.: A many-objective evolutionary algorithm based on a two-round selection strategy. IEEE Trans. Cybern. 51(3), 1417–1429 (2021)

    Article  Google Scholar 

  25. Pamulapati, T., Mallipeddi, R., Suganthan, P.N.: ISDE+—an indicator for multi and many-objective optimization. IEEE Trans. Evol. Comput.Evol. Comput. 23(2), 346–352 (2019)

    Article  Google Scholar 

  26. Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.Evol. Comput. 20(1), 16–37 (2016)

    Article  Google Scholar 

  27. Xiang, Y., Zhou, Y., Li, M., Chen, Z.: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans. Evol. Comput.Evol. Comput. 21(1), 131–152 (2017)

    Article  Google Scholar 

  28. Li, M., Yang, S., Liu, X.: Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evol. Comput.Evol. Comput. 18(3), 348–365 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, W., Jingbo, Z., Zhihua, C. (2024). Ensemble Strategy Based Hyper-heuristic Evolutionary Algorithm for Many-Objective Optimization. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics