Abstract
In recent years, generative modelling has become a significant area of computer science research and artificial intelligence. This has been primarily due to the fact that generative models are useful in addressing the class imbalance problem inherent in some datasets. By generating synthetic data samples for underrepresented classes with a decent amount of variation through random noise, classification models could be trained more efficiently. The popularity of generative models was also increased by the prospect of being able to generate previously non-existent samples of images, audio and video for other creative tasks not related to addressing the class imbalance in datasets. This paper presents exploratory research to train an artificial immune network as a standalone generative model (called a generative adversarial artificial immune network, or GAAINet) using purely immunological computation concepts, such as antibody affinity, clonal selection and hypermutation. Experimental results show that the resulting generator artificial immune network could generate human-recognisable synthetic handwritten digits without any prior knowledge of the MNIST handwritten digits dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lim, W.M., Gunasekara, A., Pallant, J.L., Pallant, J.I., Pechenkina, E.: Generative AI and the future of education: Ragnar¨ok or reformation? A paradoxical perspective from management educators. Int. J. Manage. Educ. 21(2), 100790 (2023). https://doi.org/10.1016/j.ijme.2023.100790
Cao, Y., et al.: A comprehensive survey of AI-generated content (AIGC): a history of generative AI from GAN to ChatGPT (2023). https://doi.org/10.48550/arXiv.2303.04226
Doersch, C.: Tutorial on variational autoencoders. arXiv:1606.05908 (2021)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM. ACM 63(11), 139–144 (2020). https://doi.org/10.1145/3422622
Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:2107.12521 (2021)
Blunsom, P.: Hidden markov models. Lecture notes, August 15(18–19), 48 (2004)
Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2021)
Sharrock, J., Sun, J.C.: Innate immunological memory: from plants to animals. Curr. Opin. Immunol.. Opin. Immunol. 62, 69–78 (2020). https://doi.org/10.1016/j.coi.2019.12.001
Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis. Biosystems 55(1), 143–150 (2000). https://doi.org/10.1016/S0303-2647(99)00092-1
Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol.Immunol. 125, 373–389 (1974)
Coelho, G.P., Von Zuben, F.J.: Omni-ainet: an immune-inspired approach for omni optimization. In: Bersini, H., Carneiro, J. (eds.) Artificial Immune Systems, pp. 294–308. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1007/11823940_23
Diana, R.O.M., de Souza, S.R., Wanner, E.F., Filho, M.F.F.: Hybrid metaheuristic for combinatorial optimization based on immune network for optimization and VNS. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 251–258. GECCO 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071269
Agiza, H.N., Hassan, A.E., Salah, A.M.: An improved version of opt-aiNET algorithm (i-opt-aiNET) for function optimization. IJCSNS Int. J. Comput. Sci. Netw. Secur. 11(3), 80–85 (2011)
Souza, S.S., Romero, R., Franco, J.F.: Artificial immune networks copt-aiNET and opt- aiNET applied to the reconfiguration problem of radial electrical distribution systems. Electr. Power Syst. Res. 119, 304–312 (2015)
Kanwal, S., Khan, F., Alamri, S., Dashtipur, K., Gogate, M.: Covid-opt-aiNET: a clinical decision support system for COVID-19 detection. Int. J. Imaging Syst. Technol. 32(2), 444–461 (2022)
Rassam, M.A., Maarof, M.A.: Artificial immune network clustering approach for anomaly intrusion detection. J. Adv. Inf. Technol. 3(3), 147–154 (2012)
Yang, H., Guo, J., Deng, F.: Collaborative RFID intrusion detection with an artificial immune system. J. Intell. Inf. Syst.Intell. Inf. Syst. 36(1), 1–26 (2011)
Xiao, X., Zhang, R.R.: A network intrusion detection model based on artificial immune. In: Advanced Materials Research. vol. 361, pp. 687–690. Trans Tech Publ (2012)
Shi, Y., Shen, H.: Unsupervised anomaly detection for network traffic using artificial immune network. Neural Comput. Appl.Comput. Appl. 34(15), 13007–13027 (2022). https://doi.org/10.1007/s00521-022-07156-x
Shi, Y., Peng, X., Li, R., Zhang, Y.: Unsupervised anomaly detection for network flow using immune network based k-means clustering. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds.) ICPCSEE 2017. CCIS, vol. 727, pp. 386–399. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6385-5_33
Sithungu, S.P., Ehlers, E.M.: GAAINet: a generative adversarial artificial immune network model for intrusion detection in industrial IoT Systems. J. Adv. Inf. Technol. 13(5), 456–461 (2022)
Sinn, M., Rawat, A.: Non-parametric estimation of jensen-shannon divergence in generative adversarial network training. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 84, pp. 642–651. PMLR (2018)
Kivinen, J., Williams, C.: Multiple texture boltzmann machines. In: Lawrence, N.D., Girolami, M. (eds.) Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 22, pp. 638–646. PMLR, La Palma, Canary Islands (2012)
Larsen, R., Hilger, K.B.: Probabilistic generative modelling. In: Bigun, J., Gustavsson, T. (eds.) Image Analysis, pp. 861–868. Springer Berlin Heidelberg, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_114
Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and wikipedia. In: Proceedings of the 17th International Conference on World Wide Web, pp. 347–356. WWW 2008, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1367497.1367545
Tang, Y., Salakhutdinov, R., Hinton, G.: Deep lambertian networks (2012)
Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 693–700. PMLR, Chia Laguna Resort, Sardinia, Italy (2010)
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)
Salimans, T., et al.: Improved techniques for training GANs. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)
Papavasileiou, E., Cornelis, J., Jansen, B.: A systematic literature review of the successors of “neuroevolution of augmenting topologies.” Evol. Comput.. Comput. 29(1), 1–73 (2021). https://doi.org/10.1162/evco_a_00282
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Sithungu, S.P., Ehlers, E.M. (2024). Training Artificial Immune Networks as Standalone Generative Models for Realistic Data Synthesis. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-57808-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57807-6
Online ISBN: 978-3-031-57808-3
eBook Packages: Computer ScienceComputer Science (R0)