Skip to main content

Adaptive Genetic Algorithm with Optimized Operators for Scheduling in Computer Systems

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Abstract

Modern computing and networking environments provide the important problems of efficient using such resources as energy and cores or processors. It is based on the possibility of dynamically varying the speed of processors and using parallel calculations in the execution of operations. We consider the NP-hard speed scaling scheduling problem with energy constraints and parallelizable jobs. Each job must be executed on the given number of processors. Processors can vary their speeds dynamically. It is required to assign speeds to jobs and schedule them such that the total completion time is minimized under the given energy budget. An adaptive genetic algorithm with optimized crossover operators is proposed. The optimal recombination problem is solved in the crossover operator. This problem is aimed at searching for the best possible offspring following the well-known gene transmitting property. The experimental evaluation shows that the algorithm outperforms the known metaheuristics and demonstrates the perspectives of using adaptive techniques and optimized operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3(4), 17 (2007)

    Article  MathSciNet  Google Scholar 

  2. Benoit, A., Canon, L., Elghazi, R., Heam, P.: List and shelf schedules for independent parallel tasks to minimize the energy consumption with discrete or continuous speeds. J. Parallel Distrib. Comput. 174, 100–117 (2023)

    Article  Google Scholar 

  3. Blum, A., Eremeev, A., Zakharova, Yu.: Hybridizations of evolutionary algorithms with large neighborhood search. Comput. Sci. Rev. 46, 100512 (2022)

    Article  MathSciNet  Google Scholar 

  4. Bunde, D.P.: Power-aware scheduling for makespan and flow. J. Sched. 12, 489–500 (2009)

    Article  MathSciNet  Google Scholar 

  5. Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput. 13(8), 811–831 (2009)

    Article  Google Scholar 

  6. Dahal, K., Tan, K.C., Cowling, P.I.: Evolutionary Scheduling. Springer (2007). https://doi.org/10.1007/978-3-540-48584-1

  7. Drugan, M.M.: Reinforcement learning versus evolutionary computation: a survey on hybrid algorithms. Swarm Evol. Comput. 44, 228–246 (2019)

    Article  Google Scholar 

  8. Gao, K., Huang, Y., Sadollah, A.: A review of energy-efficient scheduling in intelligent production systems. Complex Intell. Syst. 6, 237–249 (2020)

    Article  Google Scholar 

  9. Gen, M., Lin, L.: Genetic algorithms and their applications. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. (2023). https://doi.org/10.1007/978-1-4471-7503-2_33

  10. Gerards, M.E.T., Hurink, J.L., Holzenspies, P.K.F.: A survey of offline algorithms for energy minimization under deadline constraints. J. Sched. 19, 3–19 (2016)

    Article  MathSciNet  Google Scholar 

  11. Drozdowski, M. (ed.): Scheduling for Parallel Processing. Springer (2009). https://doi.org/10.1007/978-1-84882-310-5

  12. Kellegoz, T., Toklu, B., Wilson, J.: Comparing efficiencies of genetic crossover operators for one machine total weighted tardiness problem. Appl. Math. Comput. 199(2), 590–598 (2008)

    MathSciNet  Google Scholar 

  13. Kononov, A., Zakharova, Yu.: Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion. J. Glob. Optim. 83, 539–564 (2022)

    Article  MathSciNet  Google Scholar 

  14. Kononov, A.V., Zakharova, Y.V.: Speed scaling scheduling of multiprocessor jobs with energy constraint and total completion time criterion. Int. J. Artif. Intell. 21(2), 109–129 (2023)

    Google Scholar 

  15. Kong, F., Guan, N., Deng, Q., Yi, W.: Energy-efficient scheduling for parallel real-time tasks based on level-packing. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 635–640 (2011)

    Google Scholar 

  16. Li, K.: Energy efficient scheduling of parallel tasks on multiprocessor computers. J. Supercomput. 60, 223–247 (2020)

    Article  Google Scholar 

  17. Lopez-Ibanez, M., Dubois-Lacoste, J., Perez Caceres, L., Birattari, M., Stutzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  18. Mara, S.T.W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., Rifai, A.P.: A survey of adaptive large neighborhood search algorithms and applications. Comput. Oper. Res. 146, 105903 (2022)

    Article  MathSciNet  Google Scholar 

  19. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2, 1–14 (2012)

    Article  Google Scholar 

  20. Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg. ACM Trans. Algorithms 4(3), 17 (2008)

    Article  MathSciNet  Google Scholar 

  21. Reeves, C.: Genetic algorithms for the operations researcher. INFORMS J. Comput. 9(3), 231–250 (1997)

    Article  Google Scholar 

  22. Salido, M.A., Escamilla, J., Giret, A., et al.: A genetic algorithm for energy-efficiency in job-shop scheduling. Int. J. Adv. Manuf. Technol. 85, 1303–1314 (2016)

    Article  Google Scholar 

  23. Shabtay, D., Kaspi, M.: Parallel machine scheduling with a convex resource consumption function. Eur. J. Oper. Res. 173, 92–107 (2006)

    Article  MathSciNet  Google Scholar 

  24. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32, 12363–12379 (2020)

    Article  Google Scholar 

  25. Smith, J.E.: Self-adaptative and coevolving memetic algorithms. In: Neri, F., Cotta, C., Moscato, P. (eds) Handbook of Memetic Algorithms. Studies in Computational Intelligence, vol. 379. Springer, Berlin, Heidelberg. (2012). https://doi.org/10.1007/978-3-642-23247-3_11

  26. The repository with genetic algorithm results. https://github.com/mysosnovskaya/genetic_algorithm_results. Accessed 22 Jan 2024

  27. Wu, X., Che, A.: A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 82, 155–165 (2019)

    Article  Google Scholar 

  28. Zakharova, Yu., Sakhno, M.: Heuristics with local improvements for two-processor scheduling problem with energy constraint and parallelization. NUMTA 2023 180 (2023 )

    Google Scholar 

Download references

Acknowledgements

The research was supported by Russian Science Foundation grant N 22-71-10015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Sakhno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakharova, Y.V., Sakhno, M.Y. (2024). Adaptive Genetic Algorithm with Optimized Operators for Scheduling in Computer Systems. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics