Skip to main content

A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Abstract

Whole-brain network modeling (WBM) offers a pivotal tool to explore the large-scale spatiotemporal dynamics of the brain at rest, during cognitive tasks, and under external stimulation. However, it is unclear how to fuse multi-modal neural dynamics in a united WBM framework and predict the whole-brain spatiotemporal neural responses to electrical stimulation. In this study, we present a computational framework with whole-brain network modeling, parameter optimization, and model validation using simultaneous EEG-SEEG data during intracranial brain stimulation. To test the efficacy of WBM in revealing brain-wide neural dynamics, our experiments utilize synthetic electrophysiological data, real EEG data, and real EEG-SEEG signals. Experimental results demonstrate that our WBM framework accurately captures the spatiotemporal brain activities by jointly leveraging the higher spatial resolution from SEEG and the whole-brain coverage from EEG. Notably, our model shows a higher correlation between the functional connectivity (FC) matrix of EEG and that of the inferred whole-brain neural dynamics from WBM (r=0.86), compared to the FC from EEG source localization (r=0.48). Together, we demonstrate the capability and flexibility of WBM framework to uncover the whole-brain spatiotemporal neural activity and its potential to provide new insights into the input-response mechanism of the brain.

This work was funded in part by the National Key R &D Program of China (2021YFF1200804), UQ-Research Training Program (UQ-RTP) Scholarship, National Natural Science Foundation of China (62001205), Shenzhen Science and Technology Innovation Committee (2022410129, KCXFZ2020122117340001).

K. Lou and J. Li—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antony, A.R., et al.: Simultaneous scalp EEG improves seizure lateralization during unilateral intracranial EEG evaluation in temporal lobe epilepsy. Seizure 64, 8–15 (2019)

    Article  Google Scholar 

  2. Castaldo, F., et al.: Multi-modal and multi-model interrogation of large-scale functional brain. NeuroImage 277, 120236 (2023)

    Article  Google Scholar 

  3. Deco, G., et al.: Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. Neuroimage 169, 46–56 (2018)

    Article  Google Scholar 

  4. Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kötter, R.: Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. 106(25), 10302–10307 (2009)

    Article  Google Scholar 

  5. Drew, P.J.: Neurovascular coupling: motive unknown. Trends Neurosci. 45(11), 809–819 (2022)

    Article  Google Scholar 

  6. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7(267), 1–13 (2013). https://doi.org/10.3389/fnins.2013.00267

    Article  Google Scholar 

  8. Gramfort, A., et al.: MNE software for processing MEG and EEG data. Neuroimage 86, 446–460 (2014). https://doi.org/10.1016/j.neuroimage.2013.10.027

    Article  Google Scholar 

  9. Griffiths, J.D., Bastiaens, S.P., Kaboodvand, N.: Whole-brain modelling: past, present, and future. In: Giugliano, M., Negrello, M., Linaro, D. (eds.) Computational Modelling of the Brain: Modelling Approaches to Cells, Circuits and Networks, pp. 313–355. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-89439-9_13

    Chapter  Google Scholar 

  10. Hashemi, M., et al.: Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators. Neural Netw. 163, 178–194 (2023)

    Article  Google Scholar 

  11. Hebbink, J., Huiskamp, G., van Gils, S.A., Leijten, F.S., Meijer, H.G.: Pathological responses to single-pulse electrical stimuli in epilepsy: the role of feedforward inhibition. Eur. J. Neurosci. 51(4), 1122–1136 (2020)

    Article  Google Scholar 

  12. Hosseini, S.A.H., Sohrabpour, A., He, B.: Electromagnetic source imaging using simultaneous scalp EEG and intracranial EEG: an emerging tool for interacting with pathological brain networks. Clin. Neurophysiol. 129(1), 168–187 (2018)

    Article  Google Scholar 

  13. Jung, K., et al.: Whole-brain dynamical modelling for classification of Parkinson’s disease. Brain Commun. 5(1), fcac331 (2023)

    Article  Google Scholar 

  14. Ley, M., Peláez, N., Principe, A., Langohr, K., Zucca, R., Rocamora, R.: Validation of direct cortical stimulation in Presurgical evaluation of epilepsy. Clin. Neurophysiol. 137, 38–45 (2022)

    Article  Google Scholar 

  15. Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., Mantini, D.: Detecting large-scale networks in the human brain using high-density electroencephalography. Hum. Brain Mapp. 38(9), 4631–4643 (2017)

    Article  Google Scholar 

  16. Makhalova, J., et al.: Virtual epileptic patient brain modeling: relationships with seizure onset and surgical outcome. Epilepsia 63(8), 1942–1955 (2022)

    Article  Google Scholar 

  17. Mi, L., et al.: Connectome-constrained latent variable model of whole-brain neural activity. In: International Conference on Learning Representations (2021)

    Google Scholar 

  18. Momi, D., Wang, Z., Griffiths, J.D.: TMS-evoked responses are driven by recurrent large-scale network dynamics. Elife 12, e83232 (2023)

    Article  Google Scholar 

  19. Mouthaan, B.E., et al.: Single pulse electrical stimulation to identify epileptogenic cortex: clinical information obtained from early evoked responses. Clin. Neurophysiol. 127(2), 1088–1098 (2016)

    Article  Google Scholar 

  20. Parmigiani, S., et al.: Simultaneous stereo-EEG and high-density scalp EEG recordings to study the effects of intracerebral stimulation parameters. Brain Stimul. 15(3), 664–675 (2022)

    Article  MathSciNet  Google Scholar 

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Pathak, A., Roy, D., Banerjee, A.: Whole-brain network models: from physics to bedside. Front. Comput. Neurosci. 16, 866517 (2022)

    Article  Google Scholar 

  23. Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28(9), 3095–3114 (2018)

    Article  Google Scholar 

  24. Shu, S., et al.: Informed MEG/EEG source imaging reveals the locations of interictal spikes missed by SEEG. Neuroimage 254, 119132 (2022)

    Article  Google Scholar 

  25. Sip, V., Hashemi, M., Dickscheid, T., Amunts, K., Petkoski, S., Jirsa, V.: Characterization of regional differences in resting-state fMRI with a data-driven network model of brain dynamics. Sci. Adv. 9(11), eabq7547 (2023)

    Article  Google Scholar 

  26. Siu, P.H., Müller, E., Zerbi, V., Aquino, K., Fulcher, B.D.: Extracting dynamical understanding from neural-mass models of mouse cortex. Front. Comput. Neurosci. 16, 847336 (2022)

    Article  Google Scholar 

  27. Van der Vlag, M., Kusch, L., Destexhe, A., Jirsa, V., Diaz-Pier, S., Goldman, J.S.: Vast TVB parameter space exploration: a modular framework for accelerating the multi-scale simulation of human brain dynamics. arXiv preprint arXiv:2311.13337 (2023)

  28. Wang, H.E., et al.: Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy. Sci. Transl. Med. 15(680), eabp8982 (2023)

    Article  Google Scholar 

  29. Withers, C.P., et al.: Identifying sources of human interictal discharges with travelling wave and white matter propagation. Brain 146(12), 5168–5181 (2023)

    Article  Google Scholar 

  30. Yalcinkaya, B.H., et al.: Personalized virtual brains of Alzheimer’s disease link dynamical biomarkers of fMRI with increased local excitability. medRxiv pp. 2023–01 (2023)

    Google Scholar 

  31. Yang, G.J., et al.: Functional hierarchy underlies preferential connectivity disturbances in Schizophrenia. Proc. Natl. Acad. Sci. 113(2), E219–E228 (2016)

    Article  Google Scholar 

  32. Zhuang, J., et al.: AdaBelief optimizer: adapting Stepsizes by the belief in observed gradients. In: Conference on Neural Information Processing Systems (2020)

    Google Scholar 

Download references

Acknowledgements

We thank the researchers and participants who provided the open-source datasets used in this study. We are grateful for the insightful discussions with Dr. Chen Yao at Shenzhen Second Hospital, Dr. Liang Chen and Dr. Shuhao Mei at Huashan Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanying Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lou, K., Li, J., Barth, M., Liu, Q. (2024). A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics