Abstract
The itinerary planning problem plays a pivotal role in the tourism industry, involving the selection of an optimal tour route from multiple preferred points of interest (POIs) chosen by travelers while considering their diverse needs. However, as tourism expands and transportation becomes more accessible, there is a growing preference among travelers for planning single trips across multiple cities-referred to as cross-city itinerary planning. This paper introduces a novel approach, called CCIP, the cooperative coevolution framework for cross-city itinerary planning, which employs a divide-and-conquer method to automatically devise scalable cross-city itineraries, accounting for travelers’ preferences regarding time and travel choices. Experimental evaluations on real datasets from various cities in Jiangsu Province demonstrate that the proposed algorithm outperforms two classical multi-objective optimization algorithms, as measured by the HV metric.
This work is partly supported by Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 23KJB520018), the Startup Foundation for Introducing Talent of NUIST (Grant No. 2022r121), the Natural Science Foundation of Jiangsu Province (Grant No. BK20230419).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Castillo, L., et al.: SAMAP: an user-oriented adaptive system for planning tourist visits. Expert Syst. Appl. 34(2), 1318–1332 (2008)
Chang, H.T., Chang, Y.M., Tsai, M.T.: ATIPS: automatic travel itinerary planning system for domestic areas. Computat. Intell. Neurosci. 2016 (2015)
Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., Wu, Z.: TripPlanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans. Intell. Transp. Syst. 16(3), 1259–1273 (2015)
Chen, G., Wu, S., Zhou, J., Tung, A.K.: Automatic itinerary planning for traveling services. IEEE Trans. Knowl. Data Eng. 26(3), 514–527 (2014)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Hu, W., Fathi, M., Pardalos, P.M.: A multi-objective evolutionary algorithm based on decomposition and constraint programming for the multi-objective team orienteering problem with time windows. Appl. Soft Comput. 73, 383–393 (2018)
Huang, T., Gong, Y.J., Zhang, Y.H., Zhan, Z.H., Zhang, J.: Automatic planning of multiple itineraries: a niching genetic evolution approach. IEEE Trans. Intell. Transp. Syst. 21(10), 4225–4240 (2019)
Luo, W., Qiao, Y., Lin, X., Xu, P., Preuss, M.: Many-modal optimization by difficulty-based cooperative co-evolution. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1907–1914. IEEE (2019)
Ma, Z., Guo, H., Gui, Y., Gong, Y.J.: An efficient computational approach for automatic itinerary planning on web servers. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 991–999 (2021)
Moore, J.: Application of particle swarm to multiobjective optimization. Technical report (1999)
Omidvar, M.N., Kazimipour, B., Li, X., Yao, X.: CBCC3-a contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3541–3548. IEEE (2016)
Omidvar, M.N., Li, X., Yao, X.: Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1115–1122 (2011)
Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269
Qiao, Y., Luo, W., Lin, X., Xu, P., Preuss, M.: DBCC2: an improved difficulty-based cooperative co-evolution for many-modal optimization. Complex Intell. Syst. 1–21 (2023)
RodrĂguez, B., Molina, J., PĂ©rez, F., Caballero, R.: Interactive design of personalised tourism routes. Tour. Manag. 33(4), 926–940 (2012)
Ruiz-Meza, J., Montoya-Torres, J.R.: A systematic literature review for the tourist trip design problem: extensions, solution techniques and future research lines. Oper. Res. Perspect. 9, 100228 (2022)
Sun, Y., Xu, P., Zhang, Z., Zhu, T., Luo, W.: Brain storm optimization integrated with cooperative coevolution for large-scale constrained optimization. In: Tan, Y., Shi, Y., Luo, W. (eds.) ICSI 2023. LNCS, vol. 13968, pp. 356–368. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36622-2_29
Vincent, F.Y., Jewpanya, P., Ting, C.J., Redi, A.P.: Two-level particle swarm optimization for the multi-modal team orienteering problem with time windows. Appl. Soft Comput. 61, 1022–1040 (2017)
Wang, X., et al.: Analysis of changes in population’s cross-city travel patterns in the pre-and post-pandemic era: a case study of china. Cities 122, 103472 (2022)
Xu, P., Luo, W., Lin, X., Chang, Y., Tang, K.: Difficulty and contribution-based cooperative coevolution for large-scale optimization. IEEE Trans. Evol. Comput. 27(5), 1355–1369 (2023)
Xu, P., Luo, W., Lin, X., Zhang, J., Qiao, Y., Wang, X.: Constraint-objective cooperative coevolution for large-scale constrained optimization. ACM Trans. Evol. Learn. Optim. 1(3), 1–26 (2021)
Xu, P., Luo, W., Lin, X., Zhang, J., Wang, X.: A large-scale continuous optimization benchmark suite with versatile coupled heterogeneous modules. Swarm Evol. Comput. 78, 101280 (2023)
Xu, P., Luo, W., Xu, J., Qiao, Y., Zhang, J.: Density-based population initialization strategy for continuous optimization. In: Pan, L., Pang, S., Song, T., Gong, F. (eds.) BIC-TA 2020. CCIS, vol. 1363, pp. 46–59. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1354-8_5
Xu, P., Luo, W., Xu, J., Qiao, Y., Zhang, J., Gu, N.: An alternative way of evolutionary multimodal optimization: density-based population initialization strategy. Swarm Evol. Comput. 67, 100971 (2021)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zografos, K.G., Androutsopoulos, K.N.: Algorithms for itinerary planning in multimodal transportation networks. IEEE Trans. Intell. Transp. Syst. 9(1), 175–184 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Zhang, Z., Xu, P., Wang, Z., Luo, W. (2024). Cooperative Coevolution for Cross-City Itinerary Planning. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-57808-3_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57807-6
Online ISBN: 978-3-031-57808-3
eBook Packages: Computer ScienceComputer Science (R0)