Skip to main content

Cooperative Coevolution for Cross-City Itinerary Planning

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 703))

Included in the following conference series:

  • 44 Accesses

Abstract

The itinerary planning problem plays a pivotal role in the tourism industry, involving the selection of an optimal tour route from multiple preferred points of interest (POIs) chosen by travelers while considering their diverse needs. However, as tourism expands and transportation becomes more accessible, there is a growing preference among travelers for planning single trips across multiple cities-referred to as cross-city itinerary planning. This paper introduces a novel approach, called CCIP, the cooperative coevolution framework for cross-city itinerary planning, which employs a divide-and-conquer method to automatically devise scalable cross-city itineraries, accounting for travelers’ preferences regarding time and travel choices. Experimental evaluations on real datasets from various cities in Jiangsu Province demonstrate that the proposed algorithm outperforms two classical multi-objective optimization algorithms, as measured by the HV metric.

This work is partly supported by Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 23KJB520018), the Startup Foundation for Introducing Talent of NUIST (Grant No. 2022r121), the Natural Science Foundation of Jiangsu Province (Grant No. BK20230419).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Castillo, L., et al.: SAMAP: an user-oriented adaptive system for planning tourist visits. Expert Syst. Appl. 34(2), 1318–1332 (2008)

    Article  Google Scholar 

  2. Chang, H.T., Chang, Y.M., Tsai, M.T.: ATIPS: automatic travel itinerary planning system for domestic areas. Computat. Intell. Neurosci. 2016 (2015)

    Google Scholar 

  3. Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., Wu, Z.: TripPlanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans. Intell. Transp. Syst. 16(3), 1259–1273 (2015)

    Article  Google Scholar 

  4. Chen, G., Wu, S., Zhou, J., Tung, A.K.: Automatic itinerary planning for traveling services. IEEE Trans. Knowl. Data Eng. 26(3), 514–527 (2014)

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Hu, W., Fathi, M., Pardalos, P.M.: A multi-objective evolutionary algorithm based on decomposition and constraint programming for the multi-objective team orienteering problem with time windows. Appl. Soft Comput. 73, 383–393 (2018)

    Article  Google Scholar 

  7. Huang, T., Gong, Y.J., Zhang, Y.H., Zhan, Z.H., Zhang, J.: Automatic planning of multiple itineraries: a niching genetic evolution approach. IEEE Trans. Intell. Transp. Syst. 21(10), 4225–4240 (2019)

    Article  Google Scholar 

  8. Luo, W., Qiao, Y., Lin, X., Xu, P., Preuss, M.: Many-modal optimization by difficulty-based cooperative co-evolution. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1907–1914. IEEE (2019)

    Google Scholar 

  9. Ma, Z., Guo, H., Gui, Y., Gong, Y.J.: An efficient computational approach for automatic itinerary planning on web servers. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 991–999 (2021)

    Google Scholar 

  10. Moore, J.: Application of particle swarm to multiobjective optimization. Technical report (1999)

    Google Scholar 

  11. Omidvar, M.N., Kazimipour, B., Li, X., Yao, X.: CBCC3-a contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3541–3548. IEEE (2016)

    Google Scholar 

  12. Omidvar, M.N., Li, X., Yao, X.: Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1115–1122 (2011)

    Google Scholar 

  13. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  14. Qiao, Y., Luo, W., Lin, X., Xu, P., Preuss, M.: DBCC2: an improved difficulty-based cooperative co-evolution for many-modal optimization. Complex Intell. Syst. 1–21 (2023)

    Google Scholar 

  15. Rodríguez, B., Molina, J., Pérez, F., Caballero, R.: Interactive design of personalised tourism routes. Tour. Manag. 33(4), 926–940 (2012)

    Article  Google Scholar 

  16. Ruiz-Meza, J., Montoya-Torres, J.R.: A systematic literature review for the tourist trip design problem: extensions, solution techniques and future research lines. Oper. Res. Perspect. 9, 100228 (2022)

    MathSciNet  Google Scholar 

  17. Sun, Y., Xu, P., Zhang, Z., Zhu, T., Luo, W.: Brain storm optimization integrated with cooperative coevolution for large-scale constrained optimization. In: Tan, Y., Shi, Y., Luo, W. (eds.) ICSI 2023. LNCS, vol. 13968, pp. 356–368. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36622-2_29

    Chapter  Google Scholar 

  18. Vincent, F.Y., Jewpanya, P., Ting, C.J., Redi, A.P.: Two-level particle swarm optimization for the multi-modal team orienteering problem with time windows. Appl. Soft Comput. 61, 1022–1040 (2017)

    Article  Google Scholar 

  19. Wang, X., et al.: Analysis of changes in population’s cross-city travel patterns in the pre-and post-pandemic era: a case study of china. Cities 122, 103472 (2022)

    Article  Google Scholar 

  20. Xu, P., Luo, W., Lin, X., Chang, Y., Tang, K.: Difficulty and contribution-based cooperative coevolution for large-scale optimization. IEEE Trans. Evol. Comput. 27(5), 1355–1369 (2023)

    Article  Google Scholar 

  21. Xu, P., Luo, W., Lin, X., Zhang, J., Qiao, Y., Wang, X.: Constraint-objective cooperative coevolution for large-scale constrained optimization. ACM Trans. Evol. Learn. Optim. 1(3), 1–26 (2021)

    Article  Google Scholar 

  22. Xu, P., Luo, W., Lin, X., Zhang, J., Wang, X.: A large-scale continuous optimization benchmark suite with versatile coupled heterogeneous modules. Swarm Evol. Comput. 78, 101280 (2023)

    Article  Google Scholar 

  23. Xu, P., Luo, W., Xu, J., Qiao, Y., Zhang, J.: Density-based population initialization strategy for continuous optimization. In: Pan, L., Pang, S., Song, T., Gong, F. (eds.) BIC-TA 2020. CCIS, vol. 1363, pp. 46–59. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1354-8_5

    Chapter  Google Scholar 

  24. Xu, P., Luo, W., Xu, J., Qiao, Y., Zhang, J., Gu, N.: An alternative way of evolutionary multimodal optimization: density-based population initialization strategy. Swarm Evol. Comput. 67, 100971 (2021)

    Article  Google Scholar 

  25. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  27. Zografos, K.G., Androutsopoulos, K.N.: Algorithms for itinerary planning in multimodal transportation networks. IEEE Trans. Intell. Transp. Syst. 9(1), 175–184 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Xu, P., Wang, Z., Luo, W. (2024). Cooperative Coevolution for Cross-City Itinerary Planning. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics