
Towards A Flexible Accuracy-Oriented Deep
Learning Module Inference Latency Prediction

Framework for Adaptive Optimization Algorithms

Jingran Shen1, Nikos Tziritas2, and Georgios Theodoropoulos3

1 Department of Computer Science and Engineering, Southern University of Science
and Technology (SUSTech), Shenzhen, P.R. China

petershen815@126.com
2 Department of Informatics and Telecommunications, University of Thessaly, Lamia,

Greece
nitzirit@uth.gr

3 Department of Computer Science and Engineering, and Research Institute for
Trustworthy Autonomous Systems, Southern University of Science and Technology

(SUSTech), Shenzhen, P.R. China
theogeorgios@gmail.com

Abstract. With the rapid development of Deep Learning, more and
more applications on the cloud and edge tend to utilize large DNN
(Deep Neural Network) models for improved task execution efficiency
as well as decision-making quality. Due to memory constraints, models
are commonly optimized using compression, pruning, and partitioning
algorithms to become deployable onto resource-constrained devices. As
the conditions in the computational platform change dynamically, the de-
ployed optimization algorithms should accordingly adapt their solutions.
To perform frequent evaluations of these solutions in a timely fashion,
RMs (Regression Models) are commonly trained to predict the relevant
solution quality metrics, such as the resulted DNN module inference la-
tency, which is the focus of this paper. Existing prediction frameworks
specify different RM training workflows, but none of them allow flexible
configurations of the input parameters (e.g., batch size, device utiliza-
tion rate) and of the selected RMs for different modules. In this paper,
a deep learning module inference latency prediction framework is pro-
posed, which i) hosts a set of customizable input parameters to train
multiple different RMs per DNN module (e.g., convolutional layer) with
self-generated datasets, and ii) automatically selects a set of trained RMs
leading to the highest possible overall prediction accuracy, while keep-
ing the prediction time / space consumption as low as possible. Fur-
thermore, a new RM, namely MEDN (Multi-task Encoder-Decoder Net-
work), is proposed as an alternative solution. Comprehensive experiment
results show that MEDN is fast and lightweight, and capable of achiev-
ing the highest overall prediction accuracy and R-squared value. The
Time/Space-efficient Auto-selection algorithm also manages to improve
the overall accuracy by 2.5% and R-squared by 0.39%, compared to the
MEDN single-selection scheme.

Keywords: Deep learning · Machine learning · Latency Prediction.

ar
X

iv
:2

31
2.

06
44

0v
1 

 [
cs

.L
G

] 
 1

1 
D

ec
 2

02
3



2 J. Shen et al.

1 Introduction

1.1 Background

There has been an increasing number of cloud/edge-based applications that uti-
lize DNN (Deep Neural Network) models to improve task execution efficiency as
well as decision-making quality. Specifically, large DNN models like GPT-3 [3]
and SAM [5] (Segment Anything Model) are facing extra deployment concerns
due to their complex structures and heavy model sizes. The memory deficiency
problem becomes even more critical when these models need to be deployed to a
resource-constrained edge environment. To this end, a large amount of research
on different categories of model optimization algorithms has been conducted
through the past few years. These algorithms include i) compressing DNN models
through quantization techniques or autoencoders [1,15], ii) pruning DNN models
by reducing model parameters or by modifying model structures [7,8,15,18], and
iii) partitioning DNN models onto multiple devices [1,8,9,11,15,17,18]. Table 1
lists several adaptive model optimization algorithms as examples.

Table 1. Adaptive DNN Model optimization algorithms.

Algorithm Compression Pruning Partitioning Description

Auto-Split [1] ✓ ✓
two-way partitioning with
module-wise quantization

PTEENet [7] ✓ adaptive early-exiting

MoDNN [11] ✓
Linear module

weight parititioning
k-way DAG

Partitioning [9] ✓ k-way partitioning

Edgent [8] ✓ ✓
two-way partitioning

and adaptive early-exiting

Branchy
GNN [15] ✓ ✓ ✓

two-way partitioning,
adaptive early-exiting,

and intermediate
feature compression

Occasionally, the varying available memory and network bandwidth of the
devices may affect the quality of the currently provided solution. Hence, model
optimization algorithms should adjust their solutions accordingly to adapt to
these environment changes, which means that solution quality evaluations will
happen frequently. To perform the evaluations in a timely fashion due to real-
time requirements, RMs (Regression Models) are commonly trained to predict
relevant solution metrics - specifically in this paper, the resulted module infer-
ence latency. These trained RMs can also be applied to other adaptive optimiza-
tion algorithms like inference request batching [6, 16] and input data partition-
ing [4, 11, 19]. Several prediction frameworks [8, 10, 20] have been introduced to



Towards A Flexible DNN Inference Latency Prediction Framework 3

specify different RM training workflows, but none of them allow flexible con-
figurations of the input parameters (e.g., batch size, FLOPS, device utilization
rate) and the of selected RMs for different DNN modules. Since different mod-
ules have varying degrees of structure and computation complexity, they require
different regression models and input parameters for prediction. Hence, a flexible
prediction framework that can accommodate such diversity is essential.

1.2 Gap Analysis on Related Work

In this paper, a DNN module inference latency prediction framework is proposed
to address the aforementioned problem by i) hosting a set of customizable input
parameters to train multiple different RMs per DNN module (e.g., convolutional
layer) with self-generated datasets, and ii) automatically selecting a set of trained
RMs leading to the highest possible overall prediction accuracy, while keeping
the prediction time / space consumption as low as possible. Besides, a new
RM named MEDN (Multi-task Encoder-Decoder Network) is proposed as an
alternative solution.

Fig. 1. P10-Accuracy of Random Forest in different environments.

Training a universal RM for all modules [10, 12] is technically more difficult
and non-scalable due to the ever-increasing number of deep-learning modules.
Instead, the proposed framework focuses on training one RM per module and
forming a group of prediction experts through RM auto-selection, while existing
frameworks only support the single-selection scheme that uses one RM for all



4 J. Shen et al.

modules. Furthermore, the proposed framework measures the available memory
and utilization rate of the device to further improve the prediction accuracy in
a dynamic environment, where other workloads are also consuming device re-
sources. Other frameworks like Edgent [8] and nn-Meter [20] do not cover this
scenario. As shown in Figure 1, random forests trained and refined by nn-Meter
face significant accuracy drops when switching to a dynamic environment. Addi-
tionally, nn-Meter does not handle cases where the data batch size is more than
1. Finally, the proposed framework introduces Inferable Parameters to calculate
more meaningful input features (e.g., data/module size) as extra information
for RMs to handle, which is not applied by Edgent [8]. In addition, the pro-
posed framework introduces a newly designed encoder-decoder network - MEDN
(Multi-task Encoder-Decoder Network), which is faster on predictions and far
more light-weight than random forests utilized by nn-Meter. Besides, MEDN
better captures features from the input parameters and generally outperforms
other Deep RMs (e.g., Multi-Layer Perceptron, namely MLP [10,12]) on both ac-
curacy and R-squared metrics. Table 2 summarizes the features of the proposed
framework compared to other relevant latency prediction frameworks.

Table 2. Gap analysis of relevant researches on the proposed topic.

Features Edgent [8] nn-Meter [20] SWFU [10] Proposed
Framework

Utilize RM ✓ ✓ ✓ ✓

Handle larger batch sizes ✓ ✓ ✓

Infer extra information ✓ ✓ ✓

Measure device dynamics ✓ ✓

Utilize Deep RM ✓ ✓

Use Encoder-Decoder ✓

Support RM Auto-selection ✓

The rest of the paper is structured as follows: Section 1 discusses the moti-
vation for introducing the proposed framework and briefly states its advantages
compared to other existing DNN module inference latency prediction frame-
works. Section 2 outlines the key components and operations of the proposed
framework. Section 3 presents the experimental frame and a quantitative analy-
sis and evaluation of the proposed system. Section 4 summarizes the paper and
lists potential future research directions.

2 Framework Design

The key objective of the proposed framework is to support flexible RM training
configurations as well as accuracy-oriented automatic RM selections. The follow-



Towards A Flexible DNN Inference Latency Prediction Framework 5

ing components described in this section constitute the ability of the proposed
framework to achieve the stated objective.

2.1 Parameters

The input parameters are categorized into three genres, namely i) Sampling
Parameters, ii) Measurable Parameters, and iii) Inferable Parameters, to help
with systematic analysis on the their importance in a dynamic environment,
where other workloads on the device affect the module inference performances.

Table 3. Parameters for each module.

Module Sampling
Parameters

Measurable
Parameters

Inferable
Parameters

avgpool N , Ci, L, K, S M , U Nd

bn N , L, Ci M , U Nd, Nm

conv N , L, Ci, Co, K, S M , U Nd, Nm

linear N , Ci, Co M , U Nd, Nm

maxpool N , Ci, L, K, S M , U Nd

The Sampling Parameters refer to the original parameters that can be used
to construct the corresponding data and module. As an example, a convolutional
module can be constructed by specifying the Sampling Parameters including the
input/output channels Ci, Co ∈ [3, 512], kernel size K ∈ {1, 3, 5, 7, 9}, and stride
S ∈ {1, 2, 4}. The corresponding input data for the convolutional module can
be constructed by specifying the batch size N ∈ [1, 64], input height/weight
L ∈ {224, 112, 56, 32, 28, 27, 14, 13, 8, 7} along with the input channels Ci. Apart
from these original parameters, the available memory M (in bytes) and utiliza-
tion rate U ∈ [0, 1.0] of the device should be recorded as Measurable Parameters
to capture the features from the dynamic environment. Intuitively, RMs have to
be informed about whether the device is free and available to commit enough
resources to module inference tasks. When the device is heavily occupied with
other running jobs, RMs should predict a relatively slower inference speed than
the normal scenario (i.e., static environment). Finally, Inferable Parameters de-
scribe the set of parameters whose values can be calculated from other Sam-
pling/Measurable/Inferable Parameters. This category of parameters generally
offers fine-grained information to help RMs better understand the input features.
As an example, the number of model weight parameters Nm indicates the module
complexity and the input data size Nd reflects the computation overheads.

Depending on the structure of different RMs, different parameter sets can
be configured flexibly during the training procedure. Table 3 summarizes the
available parameters for various modules including Convolution, Max/Average
Pooling, Batch Normalization (abbreviated as "bn" in this paper), and Linear.



6 J. Shen et al.

2.2 Regression Model Training Workflow

Figure 2 demonstrates the RM training workflow of the proposed framework. Ba-
sically, training data samples are constructed by packing all configured parame-
ter values as input features. In detail, Sampling Parameter values are randomly
generated in the specified ranges and then used to construct the corresponding
data as well as modules for ground-truth latency measurement. Next, device
status is evaluated into Measurable Parameters and all Inferable Parameters are
calculated from the existing parameters. Finally, the packed parameter values
and the measured latency results are combined into a dataset, which is then
used to train a set of pre-configured RMs. As the last step of the training work-
flow, an auto-selection algorithm outputs a set of RMs achieving the highest
possible overall prediction accuracy, while keeping the prediction time / space
consumption as low as possible.

Fig. 2. RM training workflow of the framework.

2.3 Towards a New Regression Model

A new regression model, namely MEDN (Multi-task Encoder-Decoder Network)
is designed as an alternative solution for RM selection. Essentially, the model
is composed of one encoder and two decoders, as shown in Figure 3. The en-
coder compresses the input features x into the latent space and the prediction
decoder utilizes the latent feature to produce the predicted inference latency as
the output ŷ. Additionally, a reconstruction decoder is applied to rebuild the
input features as its output x̂, using the latent feature from the encoder. The



Towards A Flexible DNN Inference Latency Prediction Framework 7

reconstruction task aligns with the idea of autoencoders [2], which aim to formu-
late a more meaningful understanding of the input features. The training losses
of the reconstruction task and prediction task are weighted sum into one single
loss for the backpropagation procedure.

For the experimental analysis in this paper, MLPs are applied as the un-
derlying structure for both the encoder and the decoders. The structure of the
reconstruction decoder is symmetric to that of the encoder, and the hidden
dimensions in the prediction decoder gradually drop along the power of twos.
Nevertheless, it is possible to specify a different MEDN configuration as long
as the basic idea preserves the same. Theoretically, MEDN is more capable of
capturing the input features and providing more accurate predictions, compared
to simpler deep RMs like MLP. MEDN is also faster and lighter than Random
Forest, whose inference speed and model size are easily affected by the size and
complexity of the dataset.

Fig. 3. MEDN structure.

2.4 Auto-Selection

Algorithm 1 illustrates how the framework manages to find an RM selection set
automatically regarding the prediction accuracy and R-squared metric results.
In addition, the algorithm examines an extra objective (time-per-sample/model-
size) to further improve the performance in the time/space dimension. Specifi-
cally, the algorithm first filters a set of RMs possessing the highest prediction
accuracy results (Line 5-6). RMs with less than ϵa accuracy difference (as a tol-
erance factor) from the one with the highest accuracy are also included. Then,
a similar filtering operation is performed on the R-squared metric (Line 7–8).
Finally, one RM is selected according to the specified extra objective (Line 9),



8 J. Shen et al.

where the selected RM demonstrates the least inference time or model size. Uti-
lizing filtering with tolerance, the Time/Space-efficient Auto-selection algorithm
ensures that the overall accuracy and R-squared results are at the highest pos-
sible level, while attempting to place preferences on faster or lighter RMs. It is
pertinent to note that when two RMs possess the same prediction accuracy, the
one with a higher R-squared value is preferred. Intuitively, a higher R-squared
value attempts to confirm that falsely predicted samples have smaller absolute
errors, thus leading to a better result. Hence, the filtering operation is performed
on accuracy first and R-squared afterwards.

Algorithm 1 Time/Space-efficient Auto-selection.
Require: Evaluation result set Y ; accuracy and R-squared tolerance ϵa, ϵr
Ensure: Selection S: module m⇒ regression model u
1: o← time-per-sample (time-efficient) or model-size (space-efficient)
2: S ← ∅
3: for each module m ∈M do
4: Ym ← {y ∈ Y | y.m = m}
5: y1 ← arg max

y∈Ym

y.acc

6: Y1 ← {y ∈ Ym | y1.acc− y.acc ≤ ϵa}
7: y2 ← argmax

y∈Y1

y.r

8: Y2 ← {y ∈ Y1 | y2.r− y.r ≤ ϵr}
9: ys ← arg min

y∈Y2

y.o

10: S[m]← ys.u
11: end for
12: return S

3 Experimental Evaluation

3.1 Configuration

In total, four RMs including the proposed MEDN, Random Forest (abbreviated
as RF), Multi-layer Perceptron (abbreviated as MLP), as well as Linear Regres-
sion (abbreviated as LR) are trained and evaluated on nine modules, four of
which are composite modules. The configurations of Random Forests and Multi-
layer Perceptrons are respectively the same as nn-Meter [20] and SWFU [10]. In
total, 10,000 samples are generated for convolutional modules and 2,000 samples
are generated for other modules. The datasets are split into train, validation, test
set with the ratio of 7: 1 : 2. The input features are min-max scaled before being
utilized by the RMs. All presented results are evaluated on test sets. To mimic a
dynamic environment, random module inference jobs are occasionally generated
on the device.

Table 4 lists the configurations of MEDN, including the hidden dimensions
of the encoder (excluding the input dimension) and the weight ratio which is



Towards A Flexible DNN Inference Latency Prediction Framework 9

Table 4. Configurations of MEDN.

Module Encoder Hidden Weight Ratio
(Reconstr : Pred)

avgpool [64, 32, 16] 0.001
bn [32, 16, 8] 1.0

conv [128, 64, 32] 100.0
linear [64, 32, 16] 0.01

maxpool [64, 32, 16] 0.01

exactly reconstruction weight divided by prediction weight. All deep RMs are
trained for 500 epochs with the learning rate as 0.005. All losses are calculated
using the Smooth L1 Loss function. The repeated experiments are implemented
with PyTorch [13] as well as scikit-learn [14] and conducted on Tesla P100 PCIe.

3.2 Results on Single-RM Selection

According to Table 5, other RMs like RF and MLP achieve lower overall predic-
tion accuracy and R-squared compared to the proposed MEDN. Besides, they
are generally less efficient both in time (time-per-sample as "Tps" in millisec-
onds) and space dimension (model-size as "Size" in kilobytes). The overall metric
results are essentially percentage differences with MEDN, averaged over all mod-
ules. The results prove that MEDN serves better as a alternative RM solution
on all evaluated metrics.

With LR, only the Linear module is characterized by a high prediction accu-
racy, indicating that there is potentially a simple linear relationship between the
input features and the output latency for this module. However, the R-squared
results of RF and MLP turn negative on the Linear module. According to the
detailed experiment result, the standard deviation of the dataset for this mod-
ule is rather small. Therefore, R-squared results generally become negative when
the Root Mean Squared Error (RMSE) values of RF (0.0355) and MLP (0.021)
exceed the dataset standard deviation value (0.0207), while the proposed MEDN
achieves a positive R-squared with an RMSE value of 0.0203.

On the other hand, all RMs struggle with the latency prediction of convolu-
tional modules due to the complicated module structures they possess. Neverthe-
less, MEDN manages to outperform other RMs by increasing the reconstruction
task weight, as shown in Table 4. Besides, composite convolutional modules
are generally easier to predict than the monolithic convolutional module, due
to potential kernel fusion optimization techniques that are able to simplify the
computation dynamics. Surprisingly, the prediction results on pooling layers are
generally far from ideal. One of the reasons might be that these modules do not
own weight parameters, thus lacking enough inferable information for deep RMs
to comprehend. With a more complex model structure, especially like MEDN,
this can easily lead to overfitting. Future research should consider adding more



10 J. Shen et al.

Table 5. Results on different regression models for multiple deep-learning modules.

Module\RM
MEDN RF

Acc R2 Tps Size Acc R2 Tps (ms) Size (KB)
avgpool 0.6700 0.9792 0.4148 40 0.7625 0.9457 83.4442 46089

bn 0.8775 0.9937 0.8246 21 0.9050 0.9904 50.4511 23595
bn+relu 0.8300 0.9750 0.7895 21 0.8300 0.9934 51.6820 23620
conv+bn 0.6915 0.7726 0.4649 110 0.5925 0.7034 114.5584 342353

conv+bn+relu 0.6920 0.7495 0.6129 110 0.5795 0.6895 147.0191 342261
conv 0.6695 0.8626 0.4591 110 0.5875 0.7570 116.1598 342490

conv+relu 0.6925 0.9618 0.9540 110 0.6165 0.8489 137.5373 342270
linear 0.9600 0.0328 0.4048 40 0.8850 -1.6179 76.6457 41028

maxpool 0.6425 0.8745 0.4207 40 0.7425 0.7124 83.5899 46100
Avg diff%
vs. MEDN - - - - -2.5% -24% +1.8e4% +2.0e5%

Module\RM
MLP LR

Acc R2 Tps Size Acc R2 Tps (ms) Size (KB)
avgpool 0.5600 0.9035 0.5509 77 0.0950 0.1603 0.0732 3

bn 0.8800 0.9945 0.6687 77 0.2400 0.7110 0.1714 3
bn+relu 0.8275 0.9907 0.4295 77 0.2325 0.3918 0.1564 3
conv+bn 0.5900 0.7399 1.0352 77 0.1355 0.0460 0.0589 3

conv+bn+relu 0.6370 0.6304 0.3112 77 0.1545 0.0342 0.0924 3
conv 0.4855 0.8823 0.3959 77 0.1280 0.0617 0.1001 3

conv+relu 0.5755 0.9110 0.3680 77 0.1540 0.0523 0.1083 3
linear 0.9550 -0.0297 0.3075 77 0.9575 0.0578 0.0727 3

maxpool 0.5775 0.8937 0.7146 77 0.0875 0.0393 0.1477 3
Avg diff%
vs. MEDN -7.1% -3.2% +1.4% +77% -50% -63% -81% -93%

Inferable Parameters like the expected FLOPS (floating-point operations per
second).

3.3 Results on Ablation Experiment for MEDN

To examine the effect of the reconstruction decoder in MEDN, an ablation ex-
periment is performed to evaluate a non-reconstruction version (MEDN-Direct
as MEDN-D) for comparison. Besides, MEDNs trained on different parame-
ter sets are evaluated. MEDN-No-Infer (MEDN-XI) and MEDN-No-Measure
(MEDN-XM) handle all parameters except the Inferable/Measurable Parame-
ters. MEDN-RAW (MEDN-R) handles only Sampling Parameters.

Figure 4 shows the evaluated metric results averaged over all modules. P20-
Accuracy is the default accuracy metric in other result tables, specifying the
ratio of samples whose prediction percentage error is within 20%. First, it can
be noticed that MEDN outperforms MEDN-D on all metrics, verifying that the
reconstruction decoder serves an important role in the improved performance.



Towards A Flexible DNN Inference Latency Prediction Framework 11

Fig. 4. Ablation experiment on MEDN.

Next, MEDN-XI performs generally worse than MEDN-XM but better than
MEDN-R, indicating that Inferable Parameters provide more helpful guidance
to latency prediction than Measurable Parameters, although both lead to bet-
ter accuracy results. Finally, it is discovered that Measurable Parameters allow
MEDN to be more accurate on the correctly predicted samples, resulting in
higher P10-Accuracy than that of MEDN-XM.

3.4 Results on Auto-Selection

Table 6 records the resulted RM selection sets of the Time-efficient Auto-selection
algorithm (time-per-sample as the extra objective) and Space-efficient Auto-
selection algorithm (model-size as the extra objective). Both algorithms set
ϵa = ϵr = 0.05, specifying the tolerance as 5%. Compared to the MEDN single-
selection scheme where MEDN is selected for all modules, both selection sets
manage to achieve a higher overall prediction accuracy and R-squared value. In
detail, MEDN variants with the highest P20-Accuracy results are selected for
the convolutional modules, and RF is selected for the max pooling layer where
MEDN does not perform ideally. LR is selected for the simple Linear module,
which results in a significant decrease in the prediction time and storage space.

"Results on diff" in the table record the original metric results of the RMs
that differ among the schemes. Since both algorithms prioritize accuracy, the
selected RMs for the modules are rather similar except for one difference on



12 J. Shen et al.

the composite Batch Normalization + ReLU module. Examining the difference,
it can be discovered that for the Time-efficient Auto-selection algorithm, the
inference time per sample of the MLP on the module is lower than that of
MEDN-XM by the Space-efficient Auto-selection algorithm, while the model
size is larger. This aligns with their extra objectives to save time and space
respectively.

Table 6. Results on auto-selection schemes compared to MEDN single-selection.

Module/Scheme
Time-efficient
Auto-selection

Space-efficient
Auto-selection

avgpool MEDN-XM MEDN-XM
bn MEDN-XM MEDN-XM

bn+relu MLP MEDN-XM
conv+bn MEDN-R MEDN-R

conv+bn+relu MEDN-XM MEDN-XM
conv MEDN-XM MEDN-XM

conv+relu MEDN-XM MEDN-XM
linear LR LR

maxpool RF RF
Results
on diff

Tps (ms) 0.4295 0.4820
Size (KB) 77 20

Avg diff%
vs. MEDN

Acc +2.4% +2.63%
R2 +0.41% +0.36%

4 Conclusion

In this paper, a flexible accuracy-oriented DNN module inference latency pre-
diction framework is proposed to support customizable parameter configurations
and accuracy-oriented RM auto-selection in a dynamic environment. A newly de-
signed RM, namely MEDN, is also proposed as an alternative RM solution. The
quantitative analysis presented in this paper demonstrates that MEDN is fast
and lightweight, and capable of achieving the highest overall prediction accu-
racy and R-squared value. The Time/Space-efficient Auto-selection algorithm
also manages to improve the overall accuracy by 2.5% and R-squared by 0.39%,
compared to the MEDN single-selection scheme. In the future, more Inferable
Parameters and Measurable Parameters will be utilised in the experimental anal-
ysis in order to fully exploit the feature comprehension ability of MEDN.

Acknowledgements This research was supported by: Shenzhen Science and
Technology Program, China (No. GJHZ20210705141807022); Guangdong Province
Innovative and Entrepreneurial Team Programme, China (No. 2017ZT07X386);



Towards A Flexible DNN Inference Latency Prediction Framework 13

SUSTech Research Institute for Trustworthy Autonomous Systems, China. Cor-
responding author: Georgios Theodoropoulos.

References

1. Banitalebi-Dehkordi, A., Vedula, N., Pei, J., Xia, F., Wang, L., Zhang, Y.: Auto-
split: A general framework of collaborative edge-cloud ai. In: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
p. 2543–2553. KDD ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3447548.3467078, https://doi.org/10.1145/
3447548.3467078

2. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders (2021)
3. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-

lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners (2020)

4. Hu, C., Li, B.: Distributed inference with deep learning models across heteroge-
neous edge devices. In: IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications. pp. 330–339 (2022). https://doi.org/10.1109/INFOCOM48880.
2022.9796896

5. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything.
arXiv:2304.02643 (2023)

6. Kum, S., Oh, S., Yeom, J., Moon, J.: Optimization of edge resources for deep learn-
ing application with batch and model management. Sensors 22(17) (2022). https:
//doi.org/10.3390/s22176717, https://www.mdpi.com/1424-8220/22/17/6717

7. Lahiany, A., Aperstein, Y.: Pteenet: Post-trained early-exit neural networks aug-
mentation for inference cost optimization. IEEE Access 10, 69680–69687 (2022).
https://doi.org/10.1109/ACCESS.2022.3187002

8. Li, E., Zeng, L., Zhou, Z., Chen, X.: Edge ai: On-demand accelerating deep neural
network inference via edge computing (2019)

9. Lin, P., Shi, Z., Xiao, Z., Chen, C., Li, K.: Latency-driven model placement for
efficient edge intelligence service. IEEE Transactions on Services Computing 15(2),
591–601 (2022). https://doi.org/10.1109/TSC.2021.3109094

10. Liu, G., Dai, F., Huang, B., Li, L., Wang, S., Qiang, Z.: Towards accu-
rate latency prediction of dnn layers inference on diverse computing platforms.
In: 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). pp. 1–7 (2022). https://doi.org/10.
1109/DASC/PiCom/CBDCom/Cy55231.2022.9927862

11. Mao, J., Chen, X., Nixon, K.W., Krieger, C., Chen, Y.: Modnn: Local distributed
mobile computing system for deep neural network. In: Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. pp. 1396–1401 (2017). https:
//doi.org/10.23919/DATE.2017.7927211

12. Mendoza, D.: Predicting latency of neural network inference (2020)

https://doi.org/10.1145/3447548.3467078
https://doi.org/10.1145/3447548.3467078
https://doi.org/10.1145/3447548.3467078
https://doi.org/10.1145/3447548.3467078
https://doi.org/10.1109/INFOCOM48880.2022.9796896
https://doi.org/10.1109/INFOCOM48880.2022.9796896
https://doi.org/10.1109/INFOCOM48880.2022.9796896
https://doi.org/10.1109/INFOCOM48880.2022.9796896
https://doi.org/10.3390/s22176717
https://doi.org/10.3390/s22176717
https://doi.org/10.3390/s22176717
https://doi.org/10.3390/s22176717
https://www.mdpi.com/1424-8220/22/17/6717
https://doi.org/10.1109/ACCESS.2022.3187002
https://doi.org/10.1109/ACCESS.2022.3187002
https://doi.org/10.1109/TSC.2021.3109094
https://doi.org/10.1109/TSC.2021.3109094
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927862
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927862
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927862
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927862
https://doi.org/10.23919/DATE.2017.7927211
https://doi.org/10.23919/DATE.2017.7927211
https://doi.org/10.23919/DATE.2017.7927211
https://doi.org/10.23919/DATE.2017.7927211


14 J. Shen et al.

13. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learning Library. Curran
Associates Inc., Red Hook, NY, USA (2019)

14. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learning Library. Curran
Associates Inc., Red Hook, NY, USA (2019)

15. Shao, J., Zhang, H., Mao, Y., Zhang, J.: Branchy-gnn: a device-edge co-inference
framework for efficient point cloud processing (2023)

16. Shi, W., Zhou, S., Niu, Z., Jiang, M., Geng, L.: Multiuser co-inference with batch
processing capable edge server. IEEE Transactions on Wireless Communications
22(1), 286–300 (2023). https://doi.org/10.1109/TWC.2022.3192613

17. Tang, X., Chen, X., Zeng, L., Yu, S., Chen, L.: Joint multiuser dnn partitioning and
computational resource allocation for collaborative edge intelligence. IEEE Internet
of Things Journal 8(12), 9511–9522 (2021). https://doi.org/10.1109/JIOT.2020.
3010258

18. Teerapittayanon, S., McDanel, B., Kung, H.: Distributed deep neural networks over
the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). pp. 328–339 (2017). https://doi.org/
10.1109/ICDCS.2017.226

19. Zeng, L., Chen, X., Zhou, Z., Yang, L., Zhang, J.: Coedge: Cooperative dnn
inference with adaptive workload partitioning over heterogeneous edge devices.
IEEE/ACM Transactions on Networking 29(2), 595–608 (2021). https://doi.org/
10.1109/TNET.2020.3042320

20. Zhang, L.L., Han, S., Wei, J., Zheng, N., Cao, T., Yang, Y., Liu, Y.: Nn-meter: To-
wards accurate latency prediction of deep-learning model inference on diverse edge
devices. In: Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services. p. 81–93. MobiSys ’21, Association for Com-
puting Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3458864.
3467882, https://doi.org/10.1145/3458864.3467882

https://doi.org/10.1109/TWC.2022.3192613
https://doi.org/10.1109/TWC.2022.3192613
https://doi.org/10.1109/JIOT.2020.3010258
https://doi.org/10.1109/JIOT.2020.3010258
https://doi.org/10.1109/JIOT.2020.3010258
https://doi.org/10.1109/JIOT.2020.3010258
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1109/TNET.2020.3042320
https://doi.org/10.1109/TNET.2020.3042320
https://doi.org/10.1109/TNET.2020.3042320
https://doi.org/10.1109/TNET.2020.3042320
https://doi.org/10.1145/3458864.3467882
https://doi.org/10.1145/3458864.3467882
https://doi.org/10.1145/3458864.3467882
https://doi.org/10.1145/3458864.3467882
https://doi.org/10.1145/3458864.3467882

	Towards A Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms

