Abstract
Intrusion detection is a growing area of concern in Industrial Internet of Things (IIoT) systems. This is largely due to the fact that IIoT systems are typically used to augment the operation of Critical Information Infrastructures, the compromise of which could result in severe consequences for industries or even nations. In addition, IIoT is a relatively new technological development which introduces new vulnerabilities. Machine learning methods are increasingly being applied to IIoT intrusion detection. However, the data imbalance prevalent in IIoT intrusion detection datasets can limit the performance of intrusion detection algorithms due to the significantly smaller amount of attack samples. As such, generative models have been applied to address the data imbalance problem by modelling distributions of intrusion detection datasets in order to generate synthetic attack samples. Current work presents the implementation of a Generative Adversarial Artificial Immune Network (GAAINet) as an approach for addressing data imbalance IIoT intrusion detection. Experimental results show that GAAINet could generate synthetic attack samples for the WUSTL-IIoT-2021 dataset. The resulting balanced dataset was used to train an Artificial Immune Network classifier, which achieved a detection accuracy of 99.13% for binary classification and 98.87% for multi-class classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Q., Zhu, X., Ni, Y., Gu, L., Zhu, H.: Blockchain for the iot and industrial iot: a review. Internet of Things 10, 100081 (2020)
Chaudhary, R., Aujla, G.S., Garg, S., Kumar, N., Rodrigues, J.J.P.C.: Sdn-enabled multi-attribute-based secure communication for smart grid in iiot environment. IEEE Trans. Industr. Inf. 14, 2629–2640 (2018)
Iqbal, A., Amir, M., Kumar, V., Alam, A., Umair, M.: Integration of next generation iiot with blockchain for the development of smart industries. Emerg. Sci. J 4, 1–17 (2020)
Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (iiot): An analysis framework. Computers in Industry 101, 1–12 (2018). https://doi.org/10.1016/j.compind.2018.04.015, https://www.sciencedirect.com/science/article/pii/S0166361517307285
Brauner, P., et al.: A computer science perspective on digital transformation in production. ACM Trans. Internet Things 3 (2022). https://doi.org/10.1145/3502265, https://doi.org/10.1145/3502265
Dong, J., Guan, Z., Wu, L., Du, X., Guizani, M.: A sentence-level text adversarial attack algorithm against iiot based smart grid. Comput. Netw. 190, 107956 (2021). https://doi.org/10.1016/j.comnet.2021.107956, https://www.sciencedirect.com/science/article/pii/S138912862100092X
Jaidka, H., Sharma, N., Singh, R.: Evolution of iot to iiot: applications challenges. In: Proceedings of the international conference on innovative computing communications (ICICC) (2020)
Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13, 222–232 (1987). https://doi.org/10.1109/TSE.1987.232894
Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2, 1–22 (2019)
Kumar, S., Spafford, E.H.: An application of pattern matching in intrusion detection (1994)
Sundaram, A.: An introduction to intrusion detection. Crossroads 2, 3–7 (1996)
Lunt, T.F., Jagannathan, R., Lee, R., Whitehurst, A., Listgarten, S.: Knowledge based intrusion detection. In: Proceedings of the Annual AI Systems in Government Conference, Washington, DC (1989)
Kruegel, C., Toth, T.: Using decision trees to improve signature-based intrusion detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) Recent Advances in Intrusion Detection, pp. 173–191. Recent Advances in Intrusion Detection, Springer Berlin Heidelberg (2003)
Alsoufi, M.A., et al.: Anomaly-based intrusion detection systems in iot using deep learning: A systematic literature review. Appli. Sci. 11 (2021)
Wyschogrod, D., Dezso, J.: False alarm reduction in automatic signature generation for zero-day attacks. In: 2nd Cyberspace Research Workshop, pp. 73 (2009)
Mukherjee, S., Gupta, S., Rawlley, O., Jain, S.: Leveraging big data analytics in 5g- enabled iot and industrial iot for the development of sustainable smart cities. Trans. Emerging Telecommun. Technol. 33, e4618 (2022)
Yazdinejad, A., Kazemi, M., Parizi, R.M., Dehghantanha, A., Karimipour, H.: An ensemble deep learning model for cyber threat hunting in industrial internet of things. Digital Commun. Netw. 9, 101–110 (2023)
Guezzaz, A., Azrour, M., Benkirane, S., Mohy-Eddine, M., Attou, H., Douiba, M.: A lightweight hybrid intrusion detection framework using machine learning for edge-based iiot security. Int. Arab. J. Inf. Technol. 19 (2022)
Kasongo, S.M.: An advanced intrusion detection system for iiot based on ga and tree based algorithms. IEEE Access 9, 113199–113212 (2021)
Vaiyapuri, T., Sbai, Z., Alaskar, H., Alaseem, N.A.: Deep learning approaches for intrusion detection in iiot networks–opportunities and future directions. Inter. J. Adv. Comput. Sci. Appli. 12 (2021)
Yao, H., Gao, P., Zhang, P., Wang, J., Jiang, C., Lu, L.: Hybrid intrusion detection system for edge-based iiot relying on machine-learning-aided detection. IEEE Network 33, 75–81 (2019)
Zhou, L., Guo, H.: Anomaly detection methods for iiot networks. In: 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 214–219 (2018)
Yuan, L., Yu, S., Yang, Z., Duan, M., Li, K.: A data balancing approach based on generative adversarial network. Futur. Gener. Comput. Syst. 141, 768–776 (2023)
Doersch, C.: Tutorial on variational autoencoders (2016). https://arxiv.org/abs/1606.05908
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)
Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:2107.12521 (2021)
Blunsom, P.: Hidden markov models. Lecture notes, August 15, 48 (2004)
Cao, Y., et al.: A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt (Mar 2023)
Sithungu, S.P., Ehlers, E.M.: Gaainet: A generative adversarial artificial immune network model for intrusion detection in industrial iot systems. J. Adv. Inform. Technol. 13 (2022)
Aldhaheri, S., Alghazzawi, D., Cheng, L., Alzahrani, B., Al-Barakati, A.: Deepdca: novel network-based detection of iot attacks using artificial immune system. Appl. Sci. 10, 1909 (2020)
Brown, J., Anwar, M.: Blacksite: human-in-the-loop artificial immune system for intrusion detection in internet of things. Hum.-Intell. Syst. Integrat. 3, 55–67 (2021)
Le, T.T.H., Oktian, Y.E., Kim, H.: Xgboost for imbalanced multi- class classification-based industrial internet of things intrusion detection systems. Sustainability 14 (2022)
Telikani, A., Shen, J., Yang, J., Wang, P.: Industrial iot intrusion detection via evolutionary cost-sensitive learning and fog computing. IEEE Internet Things J. 9, 23260–23271 (2022)
Liang, W., Hu, Y., Zhou, X., Pan, Y., Wang, K.I.K.: Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial iot. IEEE Trans. Industr. Inf. 18, 5087–5095 (2022)
Benaddi, H., Jouhari, M., Ibrahimi, K., Othman, J.B., Amhoud, E.M.: Anomaly detection in industrial iot using distributional reinforcement learning and generative adversarial networks. Sensors 22 (2022)
Zhou, X., Hu, Y., Wu, J., Liang, W., Ma, J., Jin, Q.: Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial iot. IEEE Trans. Industr. Inf. 19, 570–580 (2023)
de Araujo-Filho, P.F., Kaddoum, G., Campelo, D.R., Santos, A.G., Macedo, D., Zanchettin, C.: Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment. IEEE Internet Things J. 8, 6247–6256 (2021)
Zolanvari, M., Gupta, L., Khan, K.M., Jain, R.: Wustl-iiot-2o2l dataset for iiot cybersecurity research. Washington University in St. Louis, USA (2021)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Sithungu, S.P., Ehlers, E.M. (2024). From Concept to Prototype: Developing and Testing GAAINet for Industrial IoT Intrusion Detection. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-57808-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57807-6
Online ISBN: 978-3-031-57808-3
eBook Packages: Computer ScienceComputer Science (R0)