Skip to main content

From Concept to Prototype: Developing and Testing GAAINet for Industrial IoT Intrusion Detection

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Abstract

Intrusion detection is a growing area of concern in Industrial Internet of Things (IIoT) systems. This is largely due to the fact that IIoT systems are typically used to augment the operation of Critical Information Infrastructures, the compromise of which could result in severe consequences for industries or even nations. In addition, IIoT is a relatively new technological development which introduces new vulnerabilities. Machine learning methods are increasingly being applied to IIoT intrusion detection. However, the data imbalance prevalent in IIoT intrusion detection datasets can limit the performance of intrusion detection algorithms due to the significantly smaller amount of attack samples. As such, generative models have been applied to address the data imbalance problem by modelling distributions of intrusion detection datasets in order to generate synthetic attack samples. Current work presents the implementation of a Generative Adversarial Artificial Immune Network (GAAINet) as an approach for addressing data imbalance IIoT intrusion detection. Experimental results show that GAAINet could generate synthetic attack samples for the WUSTL-IIoT-2021 dataset. The resulting balanced dataset was used to train an Artificial Immune Network classifier, which achieved a detection accuracy of 99.13% for binary classification and 98.87% for multi-class classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Q., Zhu, X., Ni, Y., Gu, L., Zhu, H.: Blockchain for the iot and industrial iot: a review. Internet of Things 10, 100081 (2020)

    Google Scholar 

  2. Chaudhary, R., Aujla, G.S., Garg, S., Kumar, N., Rodrigues, J.J.P.C.: Sdn-enabled multi-attribute-based secure communication for smart grid in iiot environment. IEEE Trans. Industr. Inf. 14, 2629–2640 (2018)

    Article  Google Scholar 

  3. Iqbal, A., Amir, M., Kumar, V., Alam, A., Umair, M.: Integration of next generation iiot with blockchain for the development of smart industries. Emerg. Sci. J 4, 1–17 (2020)

    Article  Google Scholar 

  4. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (iiot): An analysis framework. Computers in Industry 101, 1–12 (2018). https://doi.org/10.1016/j.compind.2018.04.015, https://www.sciencedirect.com/science/article/pii/S0166361517307285

  5. Brauner, P., et al.: A computer science perspective on digital transformation in production. ACM Trans. Internet Things 3 (2022). https://doi.org/10.1145/3502265, https://doi.org/10.1145/3502265

  6. Dong, J., Guan, Z., Wu, L., Du, X., Guizani, M.: A sentence-level text adversarial attack algorithm against iiot based smart grid. Comput. Netw. 190, 107956 (2021). https://doi.org/10.1016/j.comnet.2021.107956, https://www.sciencedirect.com/science/article/pii/S138912862100092X

  7. Jaidka, H., Sharma, N., Singh, R.: Evolution of iot to iiot: applications challenges. In: Proceedings of the international conference on innovative computing communications (ICICC) (2020)

    Google Scholar 

  8. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13, 222–232 (1987). https://doi.org/10.1109/TSE.1987.232894

  9. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2, 1–22 (2019)

    Article  Google Scholar 

  10. Kumar, S., Spafford, E.H.: An application of pattern matching in intrusion detection (1994)

    Google Scholar 

  11. Sundaram, A.: An introduction to intrusion detection. Crossroads 2, 3–7 (1996)

    Article  Google Scholar 

  12. Lunt, T.F., Jagannathan, R., Lee, R., Whitehurst, A., Listgarten, S.: Knowledge based intrusion detection. In: Proceedings of the Annual AI Systems in Government Conference, Washington, DC (1989)

    Google Scholar 

  13. Kruegel, C., Toth, T.: Using decision trees to improve signature-based intrusion detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) Recent Advances in Intrusion Detection, pp. 173–191. Recent Advances in Intrusion Detection, Springer Berlin Heidelberg (2003)

    Google Scholar 

  14. Alsoufi, M.A., et al.: Anomaly-based intrusion detection systems in iot using deep learning: A systematic literature review. Appli. Sci. 11 (2021)

    Google Scholar 

  15. Wyschogrod, D., Dezso, J.: False alarm reduction in automatic signature generation for zero-day attacks. In: 2nd Cyberspace Research Workshop, pp. 73 (2009)

    Google Scholar 

  16. Mukherjee, S., Gupta, S., Rawlley, O., Jain, S.: Leveraging big data analytics in 5g- enabled iot and industrial iot for the development of sustainable smart cities. Trans. Emerging Telecommun. Technol. 33, e4618 (2022)

    Google Scholar 

  17. Yazdinejad, A., Kazemi, M., Parizi, R.M., Dehghantanha, A., Karimipour, H.: An ensemble deep learning model for cyber threat hunting in industrial internet of things. Digital Commun. Netw. 9, 101–110 (2023)

    Article  Google Scholar 

  18. Guezzaz, A., Azrour, M., Benkirane, S., Mohy-Eddine, M., Attou, H., Douiba, M.: A lightweight hybrid intrusion detection framework using machine learning for edge-based iiot security. Int. Arab. J. Inf. Technol. 19 (2022)

    Google Scholar 

  19. Kasongo, S.M.: An advanced intrusion detection system for iiot based on ga and tree based algorithms. IEEE Access 9, 113199–113212 (2021)

    Article  Google Scholar 

  20. Vaiyapuri, T., Sbai, Z., Alaskar, H., Alaseem, N.A.: Deep learning approaches for intrusion detection in iiot networks–opportunities and future directions. Inter. J. Adv. Comput. Sci. Appli. 12 (2021)

    Google Scholar 

  21. Yao, H., Gao, P., Zhang, P., Wang, J., Jiang, C., Lu, L.: Hybrid intrusion detection system for edge-based iiot relying on machine-learning-aided detection. IEEE Network 33, 75–81 (2019)

    Article  Google Scholar 

  22. Zhou, L., Guo, H.: Anomaly detection methods for iiot networks. In: 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 214–219 (2018)

    Google Scholar 

  23. Yuan, L., Yu, S., Yang, Z., Duan, M., Li, K.: A data balancing approach based on generative adversarial network. Futur. Gener. Comput. Syst. 141, 768–776 (2023)

    Article  Google Scholar 

  24. Doersch, C.: Tutorial on variational autoencoders (2016). https://arxiv.org/abs/1606.05908

  25. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020) 

    Google Scholar 

  26. Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:2107.12521 (2021)

  27. Blunsom, P.: Hidden markov models. Lecture notes, August 15, 48 (2004)

    Google Scholar 

  28. Cao, Y., et al.: A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt (Mar 2023)

    Google Scholar 

  29. Sithungu, S.P., Ehlers, E.M.: Gaainet: A generative adversarial artificial immune network model for intrusion detection in industrial iot systems. J. Adv. Inform. Technol. 13 (2022)

    Google Scholar 

  30. Aldhaheri, S., Alghazzawi, D., Cheng, L., Alzahrani, B., Al-Barakati, A.: Deepdca: novel network-based detection of iot attacks using artificial immune system. Appl. Sci. 10, 1909 (2020)

    Article  Google Scholar 

  31. Brown, J., Anwar, M.: Blacksite: human-in-the-loop artificial immune system for intrusion detection in internet of things. Hum.-Intell. Syst. Integrat. 3, 55–67 (2021)

    Article  Google Scholar 

  32. Le, T.T.H., Oktian, Y.E., Kim, H.: Xgboost for imbalanced multi- class classification-based industrial internet of things intrusion detection systems. Sustainability 14 (2022)

    Google Scholar 

  33. Telikani, A., Shen, J., Yang, J., Wang, P.: Industrial iot intrusion detection via evolutionary cost-sensitive learning and fog computing. IEEE Internet Things J. 9, 23260–23271 (2022)

    Article  Google Scholar 

  34. Liang, W., Hu, Y., Zhou, X., Pan, Y., Wang, K.I.K.: Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial iot. IEEE Trans. Industr. Inf. 18, 5087–5095 (2022)

    Article  Google Scholar 

  35. Benaddi, H., Jouhari, M., Ibrahimi, K., Othman, J.B., Amhoud, E.M.: Anomaly detection in industrial iot using distributional reinforcement learning and generative adversarial networks. Sensors 22 (2022)

    Google Scholar 

  36. Zhou, X., Hu, Y., Wu, J., Liang, W., Ma, J., Jin, Q.: Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial iot. IEEE Trans. Industr. Inf. 19, 570–580 (2023)

    Article  Google Scholar 

  37. de Araujo-Filho, P.F., Kaddoum, G., Campelo, D.R., Santos, A.G., Macedo, D., Zanchettin, C.: Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment. IEEE Internet Things J. 8, 6247–6256 (2021)

    Article  Google Scholar 

  38. Zolanvari, M., Gupta, L., Khan, K.M., Jain, R.: Wustl-iiot-2o2l dataset for iiot cybersecurity research. Washington University in St. Louis, USA (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siphesihle Philezwini Sithungu or Elizabeth Marie Ehlers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sithungu, S.P., Ehlers, E.M. (2024). From Concept to Prototype: Developing and Testing GAAINet for Industrial IoT Intrusion Detection. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics