Skip to main content

Entropy-Based Logic Explanations of Differentiable Decision Tree

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Abstract

Explainable reinforcement learning has evolved rapidly over the years because transparency of the model’s decision-making process is crucial in some important domains. Differentiable decision trees have been applied to this field due to their performance and interpretability. However, the number of parameters per branch node of a differentiable decision tree is related to the state dimension. When the feature dimension of states increases, the number of states considered by the model in each branch node decision also increases linearly, which increases the difficulty of human understanding. This paper proposes a entroy-based differentiable decision tree, which can restrict each branch node to use as few features as possible to predict during the training process. After the training is completed, the parameters that have little impact on the output of the branch node will be blocked, thus significantly reducing the decision complexity of each branch node. Experiments in multiple environments demonstrate the significant interpretability advantage of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Atrey, A., Clary, K., Jensen, D.: Exploratory not explanatory: counterfactual analysis of saliency maps for deep reinforcement learning (2019)

    Google Scholar 

  2. Babbar, S.: Review - mastering the game of go with deep neural networks and tree search (2017)

    Google Scholar 

  3. Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-based logic explanations of neural networks (2021)

    Google Scholar 

  4. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction (2018)

    Google Scholar 

  5. Breiman, L.: Classification and regression trees. Routledge (2017)

    Google Scholar 

  6. Brodley, C.E., Utgoff, P.E.: Multivariate decision trees. Mach. Learn. 19, 45–77 (1995)

    Google Scholar 

  7. Clay-Williams, R., Colligan, L.: Back to basics: checklists in aviation and healthcare. BMJ Qual. Safety 24(7), 428–431 (2015)

    Article  Google Scholar 

  8. Decelle, A., Martin-Mayor, V., Seoane, B.: learning a gauge symmetry with neural-networks (2019)

    Google Scholar 

  9. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv (2017)

    Google Scholar 

  10. Ferreira, F., Nierhoff, T., Hutter, F.: Learning synthetic environments for reinforcement learning with evolution strategies (2021)

    Google Scholar 

  11. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv preprint arXiv:1711.09784 (2017)

  12. Gawande, A.: Checklist manifesto, the (HB). Penguin Books India (2010)

    Google Scholar 

  13. Greydanus, S., Koul, A., Dodge, J., Fern, A.: Visualizing and understanding atari agents (2017)

    Google Scholar 

  14. Haynes, A.B., et al.: A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 360(5), 491–499 (2009)

    Article  Google Scholar 

  15. Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: IJCAI. vol. 1993, pp. 1002–1007. Citeseer (1993)

    Google Scholar 

  16. Jhunjhunwala, A., Lee, J., Sedwards, S., Abdelzad, V., Czarnecki, K.: Improved policy extraction via online q-value distillation. In: 2020 International Joint Conference on Neural Networks (IJCNN)

    Google Scholar 

  17. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the em algorithm. Neural Comput. 6(2), 181–214 (1994)

    Article  Google Scholar 

  18. Kauffman, G., Holland, P., Andersen, R., Bergman, R., Huang, J.: Efficient bipedal robots based on passive-dynamic walkers (2005)

    Google Scholar 

  19. Li, H., Song, J., Xue, M., Zhang, H., Ye, J., Cheng, L., Song, M.: A survey of neural trees. arXiv preprint arXiv:2209.03415 (2022)

  20. Li, J., Monroe, W., Ritter, A., Jurafsky, D., Gao, J.: Deep reinforcement learning for dialogue generation (2016)

    Google Scholar 

  21. Liu, G., Schulte, O., Zhu, W., Li, Q.: Toward interpretable deep reinforcement learning with linear model u-trees (2018)

    Google Scholar 

  22. Mnih, V., et al.: Playing atari with deep reinforcement learning. Computer Science (2013)

    Google Scholar 

  23. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994)

    Article  Google Scholar 

  24. Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: Oc1: a randomized algorithm for building oblique decision trees. In: Proceedings of AAAI. vol. 93, pp. 322–327. Citeseer (1993)

    Google Scholar 

  25. Silva, A., Gombolay, M., Killian, T.W., Jimenez, I.D.J., Son, S.H.: Optimization methods for interpretable differentiable decision trees applied to reinforcement learning. PMLR (2020)

    Google Scholar 

  26. Silva, A., Gombolay, M.C.: Encoding human domain knowledge to warm start reinforcement learning. In: National Conference on Artificial Intelligence (2021)

    Google Scholar 

  27. Stromberg, J.E., Zrida, J., Isaksson, A.: Neural trees-using neural nets in a tree classifier structure. In: Acoustics, Speech, and Signal Processing, IEEE International Conference, pp. 137–140. IEEE Computer Society (1991)

    Google Scholar 

  28. Topin, N., Milani, S., Fang, F., Veloso, M.: Iterative bounding mdps: Learning interpretable policies via non-interpretable methods (2021)

    Google Scholar 

  29. Utgoff, P.E., Brodley, C.E.: An incremental method for finding multivariate splits for decision trees. In: Machine Learning Proceedings 1990, pp. 58–65. Elsevier (1990)

    Google Scholar 

  30. Zubkov, A.: Md-ace vs td3 in lunarlandercontinuous-v2 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Zhang, J., Li, Y. (2024). Entropy-Based Logic Explanations of Differentiable Decision Tree. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics