Skip to main content

A New Redundant Intelligent Architecture to Improve the Operational Safety of Autonomous Vehicles

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2024)

Abstract

Considering that connected autonomous vehicles are the future of transportation, it is essential to investigate their dependability and accessibility in order to enhance their market acceptance and make them commercially viable. One of the primary challenges faced by autonomous connected vehicles is the frequent occurrence of dropped packages, which significantly undermines their reliability. To ensure a high level of reliability in autonomous vehicles equipped with a level 5 autonomous driving system, we propose a novel architecture that incorporates redundancy. This architecture aims to bolster reliability while mitigating the risk of failures. Additionally, we introduce a neuro-fuzzy communication controller that enables the reduction of dropped message rates by seamlessly switching between the various connectivity modules present within the vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical Systems Approach. MIT Press (2017)

    Google Scholar 

  2. Bahrammirzaee, A.: A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput. Appl. 19(8), 1165–1195 (2010)

    Article  Google Scholar 

  3. Szénási, S., Kertész, G., Felde, I., Nádai, L.: Statistical accident analysis supporting the control of autonomous vehicles. J. Comput. Meth. Sci. Eng. 21(1), 85–97 (2021)

    Google Scholar 

  4. Kyriakidis, M., et al.: A human factors perspective on automated driving. Theor. Issues Ergon. Sci. 20(3), 223–249 (2019)

    Article  MathSciNet  Google Scholar 

  5. Van Brummelen, J., O’Brien, M., Gruyer, D., Najjaran, H.: Autonomous vehicle perception: the technology of today and tomorrow. Trans. Res. Part C Emerg. Technol. 89, 384–406 (2018)

    Article  Google Scholar 

  6. Okuda, R., Kajiwara, Y., Terashima, K.: A survey of technical trend of ADAS and autonomous driving. In: Technical Papers of: International Symposium on VLSI Design, Automation and Test, vol. 2014, pp. 1–4 (2014)

    Google Scholar 

  7. Van Brummelen, J., O’Brien, M., Gruyer, D., Najjaran, H.: Autonomous vehicle perception: the technology of today and tomorrow. Transp. Res. Part C Emerg. Technol, 89, 384–406 (2018)

    Article  Google Scholar 

  8. Davies, A.: Google’s self-driving car caused its first crash (2016). http://www.wired.com/2016/02/googles-selfdrivingcar-may-caused-first-crash/

  9. Nunen, E., Koch, R., Elshof, L., Krosse, B.: Sensor safety for the European Truck Platooning Challenge, November 2016

    Google Scholar 

  10. Vanholme, B., Gruyer, D., Lusetti, B., Glaser, S., Mammar, S.: Highly automated driving on highways based on legal safety. IEEE Trans. Intell. Transp. Syst. 14(1), 333–347 (2013)

    Article  Google Scholar 

  11. Crane, D.A., Logue, K.D., Pilz, B.C.: A survey of legal issues arising from the deployment of autonomous and connected vehicles. Mich. Telecomm. Tech. L. Rev. 23, 191 (2016)

    Google Scholar 

  12. Boubakri, A., Mettali Gammar, S.: Intra-platoon communication in autonomous vehicle: a survey. In: 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks (PEMWN), pp. 1–6 (2020)

    Google Scholar 

  13. IEEE 802.11p part11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 7: Wireless access in vehicular environment, July 2010

    Google Scholar 

  14. Ucar, S., Ergen, S.C., Ozkasap, O.: Security vulnerabilities of IEEE 802.11p and visible light communication based platoon. In: 2016 IEEE Vehicular Networking Conference (VNC), pp. 1–4 (2016)

    Google Scholar 

  15. Gonzalez-Martín, M., Sepulcre, M., Molina-Masegosa, R., Gozalvez, J.: Analytical models of the performance of C-V2X mode 4 vehicular communications. IEEE Trans. Veh. Technol. 68(2), 1155–1166 (2018)

    Article  Google Scholar 

  16. Boubakri, A., Gammar, S.M.: Intra-platoon communication in autonomous vehicle: a survey. In: 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks (PEMWN), pp. 1–6. IEEE (2020)

    Google Scholar 

  17. Abualhoul, M.Y., Marouf, M., Shag, O., Nashashibi, F.: Enhancing the field of view limitation of visible light communication-based platoon. In: 2014 IEEE 6th International Symposium on Wireless Vehicular Communications, WiVeC 2014, pp. 1–5 (2014)

    Google Scholar 

  18. Tsugawa, S., Kato, S., Tokuda, K., Matsui, T., Fujii, H.: A cooperative driving system with automated vehicles and inter-vehicle communications in Demo 2000. In: 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585), ITSC 2001, pp. 918–923 (2001)

    Google Scholar 

  19. Yin, J., et al.: Performance evaluation of safety applications over DSRC vehicular ad hoc networks, pp. 1–9, January 2004

    Google Scholar 

  20. Koopman, P., Ferrell, U., Fratrik, F., Wagner, M.: A safety standard approach for fully autonomous vehicles. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 326–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1_26

    Chapter  Google Scholar 

  21. Van Brummelen, J., O’Brien, M., Gruyer, D., Najjaran, H.: Autonomous vehicle perception: the technology of today and tomorrow. Transp. Res. Part C Emerg. Technol. 89, 384–406 (2018)

    Article  Google Scholar 

  22. Pham, H.: Software Reliability. Springer, Heidelberg (2000)

    Google Scholar 

  23. Fraedrich, E., Lenz, B.: Societal and individual acceptance of autonomous driving. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomous Driving, pp. 621–640. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8_29

    Chapter  Google Scholar 

  24. Cheng, H.: Autonomous Intelligent Vehicles: Theory, Algorithms, and Implementation. Springer, London (2011). https://doi.org/10.1007/978-1-4471-2280-7

  25. Khelifi, H., et al.: Named data networking in vehicular ad hoc networks: state-of-the-art and challenges. IEEE Commun. Surv. Tut. 22(1), 320–351 (2019)

    Article  Google Scholar 

  26. Amadeo, M., Campolo, C., Molinaro, A.: Named data networking for priority-based content dissemination in VANETs. In: IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), vol. 2016, pp. 1–6. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Boujezza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boujezza, H., Boubakri, A. (2024). A New Redundant Intelligent Architecture to Improve the Operational Safety of Autonomous Vehicles. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-031-57840-3_13

Download citation

Publish with us

Policies and ethics