Skip to main content

Deep Reinforcement Learning for VNF Placement and Chaining of Cloud Network Services

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2024)

Abstract

With Network Function Virtualization (NFV), network services can be swiftly and efficiently constructed by instantiating Virtual Network Functions (VNFs) on host servers. In order to optimize resource utilization (such as bandwidth) and meet Service-Level Agreements (end-to-end delay for instance), efficient solutions are required for VNF placement, consolidation, and chaining. To tackle these challenges, we propose two approaches: (1) a novel Formal Concept Analysis (FCA)-based method focused on placing VNFs on appropriate virtual machines, and (2) a Deep Reinforcement Learning-based approach that integrates two parallel modules for VNF placement and chaining: Markov Decision Process (MDP) and Long Short-Term Memory (LSTM).

The parallel operation of these modules enables the extraction and capture of the current NFV environment and historical transitions. In our proposal, we employ Policy Gradient for agent training, aiming to identify suitable hosts for each VNF in the Service Function Chain (SFC), thereby enhancing various quality metrics such as latency, resource cost, and throughput. Simulation results show the effectiveness of our approach, achieving a 47% improvement in rewards compared to the deep VNF approach and a 52% improvement compared to the First Fit approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelhamid, A.: Service function placement and chaining in network function virtualization environments. Ph.D. thesis, Bordeaux (2019)

    Google Scholar 

  2. Cho, D., Taheri, J., Zomaya, A.Y., Bouvry, P.: Real-time virtual network function (VNF) migration toward low network latency in cloud environments. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp. 798–801. IEEE (2017)

    Google Scholar 

  3. Ferdaus, M.H., Murshed, M., Calheiros, R.N., Buyya, R.: Virtual machine consolidation in cloud data centers using ACO metaheuristic. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNTCS, vol. 8632, pp. 306–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09873-9_26

    Chapter  Google Scholar 

  4. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)

    Article  MathSciNet  Google Scholar 

  5. Helali, L., Omri, M.N.: A survey of data center consolidation in cloud computing systems. Comput. Sci. Rev. 39, 100366 (2021)

    Article  Google Scholar 

  6. Helali, L., Omri, M.N.: Software license consolidation and resource optimization in container-based virtualized data centers. J. Grid Comput. 20(2), 13 (2022)

    Article  Google Scholar 

  7. Helali, L., Omri, M.N.: Machine learning compliance-aware dynamic software allocation for energy, cost and resource-efficient cloud environment. Sustain. Comput. Inform. Syst. 41, 100938 (2024)

    Google Scholar 

  8. Joseph, C.T., Chandrasekaran, K., Cyriac, R.: A novel family genetic approach for virtual machine allocation. Procedia Comput. Sci. 46, 558–565 (2015)

    Article  Google Scholar 

  9. Khemili, W., Hajlaoui, J.E., Omri, M.N.: Energy aware fuzzy approach for placement and consolidation in cloud data centers. J. Parallel Distrib. Comput. 161, 130–142 (2022)

    Article  Google Scholar 

  10. Lal, S., Taleb, T., Dutta, A.: NFV: security threats and best practices. IEEE Commun. Mag. 55(8), 211–217 (2017)

    Article  Google Scholar 

  11. Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in clouds through gossiping. In: 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–6. IEEE (2011)

    Google Scholar 

  12. Mavridis, I., Karatza, H.: Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing. Future Gener. Comput. Syst. 94, 674–696 (2019)

    Article  Google Scholar 

  13. Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., Boutaba, R.: Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 18(1), 236–262 (2015)

    Article  Google Scholar 

  14. Nikolai, J., Wang, Y.: Hypervisor-based cloud intrusion detection system. In: 2014 International Conference on Computing, Networking and Communications (ICNC), pp. 989–993. IEEE (2014)

    Google Scholar 

  15. Pei, J., Hong, P., Li, D.: Virtual network function selection and chaining based on deep learning in SDN and NFV-enabled networks. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2018)

    Google Scholar 

  16. Qi, D., Shen, S., Wang, G.: Virtualized network function consolidation based on multiple status characteristics. IEEE Access 7, 59665–59679 (2019)

    Article  Google Scholar 

  17. Shojafar, M., Canali, C., Lancellotti, R., Baccarelli, E.: Minimizing computing-plus-communication energy consumptions in virtualized networked data centers. In: 2016 IEEE Symposium on Computers and Communication (ISCC), pp. 1137–1144. IEEE (2016)

    Google Scholar 

  18. Soualah, O., Mechtri, M., Ghribi, C., Zeghlache, D.: Energy efficient algorithm for VNF placement and chaining. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 579–588. IEEE (2017)

    Google Scholar 

  19. Szabo, R., Kind, M., Westphal, F.-J., Woesner, H., Jocha, D., Csaszar, A.: Elastic network functions: opportunities and challenges. IEEE Netw. 29(3), 15–21 (2015)

    Article  Google Scholar 

  20. Tang, M., Pan, S.: A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. Neural Process. Lett. 41, 211–221 (2015)

    Article  Google Scholar 

  21. Watada, J., Roy, A., Kadikar, R., Pham, H., Bing, X.: Emerging trends, techniques and open issues of containerization: a review. IEEE Access 7, 152443–152472 (2019)

    Article  Google Scholar 

  22. Zhang, Q., Liu, F., Zeng, C.: Adaptive interference-aware VNF placement for service-customized 5G network slices. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 2449–2457. IEEE (2019)

    Google Scholar 

  23. Zhou, J., Hong, P., Pei, J., Li, D.: Multi-task deep learning based dynamic service function chains routing in SDN/NFV-enabled networks. In: ICC 2019-2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohand Yazid Saidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khemili, W., Hajlaoui, J.E., Saidi, M.Y., Omri, M.N., Chen, K. (2024). Deep Reinforcement Learning for VNF Placement and Chaining of Cloud Network Services. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-031-57870-0_8

Download citation

Publish with us

Policies and ethics