Skip to main content

Investigating the Impact of Congestion Control Algorithms on Edge-Cloud Continuum

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2024)

Abstract

Edge-Cloud Continuum (ECC) is an architecture combining the concepts of Cloud and Edge Computing to improve the performance of distributed services. This combination is necessary to improve Quality-of-Service (QoS) indicators, related to latency, processing time, and energy consumption. Essentially, services are simultaneously hosted by edge and cloud servers, distributing the workload based on user’s expectations. Although revolutionary, the ECC architecture is dependent on the interconnection networks, inheriting its research challenges related to the management and shared resources. Even applying optimized provisioning policies (scheduling and allocation), the end-to-end performance of distributed applications remains dependent on Transmission Control Protocol (TCP)’s internal algorithms. We investigate the impact of the congestion control algorithms Cubic, Reno and Bottleneck Bandwidth and Round-trip propagation time (BBR) when used for supporting ECC applications. Our experimental analysis comprises two scenarios: (i) the execution of n-layer application using resources distributed atop edge and cloud providers, and configured with Cubic and Reno algorithms; and (ii) a scenario demonstrating the benefits of using BBR in ECC architectures. In summary, the analyzes demonstrate that the congestion control configuration can improve application performance in ECC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at: https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/n-tier.

  2. 2.

    Ryu Controller. Available at: https://ryu-sdn.org.

References

  1. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)

    Article  Google Scholar 

  2. Alizadeh, M., et al.: Data center tcp (dctcp). In: Proceedings of the ACM SIGCOMM 2010 Conference, pp. 63–74 (2010)

    Google Scholar 

  3. Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N., Madeira, E., Curado, M., Villas, L., DaSilva, L., Lee, C., Rana, O.: The internet of things, fog and cloud continuum: integration and challenges. Internet Things 3–4, 134–155 (2018)

    Article  Google Scholar 

  4. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: Bbr: congestion-based congestion control. Commun. ACM 60(2), 58–66 (2017)

    Article  Google Scholar 

  5. Claypool, S., Chung, J., Claypool, M.: Measurements comparing tcp cubic and tcp bbr over a satellite network. In: 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4. IEEE (2021)

    Google Scholar 

  6. ETSI, N.F.V.: Network functions virtualisation (nfv). Management and Orchestration 1, V1 (2014)

    Google Scholar 

  7. Garcia Lopez, P., et al.: Edge-centric computing: vision and challenges. SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)

    Article  Google Scholar 

  8. Ha, S., Rhee, I., Xu, L.: Cubic: a new tcp-friendly high-speed tcp variant. SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008)

    Article  Google Scholar 

  9. Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 18(4), 314–329 (1988)

    Article  Google Scholar 

  10. Jain, V.K., Mazumdar, A.P., Faruki, P., Govil, M.C.: Congestion control in internet of things: Classification, challenges, and future directions. Sustainable Comput. Inform. Syst. 35, 100,678 (2022)

    Google Scholar 

  11. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2014)

    Article  Google Scholar 

  12. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX. Association for Computing Machinery, New York (2010)

    Google Scholar 

  13. Lorincz, J., Klarin, Z., Ožegović, J.: A comprehensive overview of tcp congestion control in 5g networks: research challenges and future perspectives. Sensors 21(13), 4510 (2021)

    Article  Google Scholar 

  14. Luo, Q., Hu, S., Li, C., Li, G., Shi, W.: Resource scheduling in edge computing: a survey. CoRR abs/2108.08059 (2021)

    Google Scholar 

  15. Mell, P., Grance, T.: The nist definition of cloud computing (2011)

    Google Scholar 

  16. Moro, V., Pillon, M.A., Miers, C.C., Koslovski, G.P.: Analysis of congestion control virtualization on execution of hadoop mapreduce application. In: 2018 Symposium on High Performance Computing Systems (WSCAD), pp. 93–93 (2018)

    Google Scholar 

  17. da Silva de Oliveira, F., Pillon, M.A., Miers, C.C., Koslovski, G.P.: Identifying network congestion on sdn-based data centers with supervised classification. In: Barolli, L. (ed.) Advanced Information Networking and Applications, pp. 222–234. Springer, Cham (2023)

    Google Scholar 

  18. Pan, J., McElhannon, J.: Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 5(1), 439–449 (2017)

    Article  Google Scholar 

  19. Pham, Q.V., et al.: A survey of multi-access edge computing in 5g and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 8, 116,974–117,017 (2020)

    Google Scholar 

  20. Roberts, J., Skandalakis, J., Foard, R., Choi, J.: A comparison of sdn based tcp congestion control with tcp reno and cubic. Technical Report (2016)

    Google Scholar 

  21. Rodrigues, D.O., de Souza, A.M., Braun, T., Maia, G., Loureiro, A.A., Villas, L.A.: Service provisioning in edge-cloud continuum: emerging applications for mobile devices. J. Internet Serv. Appl. 14(1), 47–83 (2023)

    Article  Google Scholar 

  22. Sandoval, J.I., Céspedes, S.: Performance evaluation of congestion control over b5g/6g fluctuating scenarios. In: Proceedings of the Int’l ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, pp. 85–92 (2023)

    Google Scholar 

  23. Verma, L.P., Kumar, M.: An iot based congestion control algorithm. Internet Things 9, 100, 157 (2020)

    Google Scholar 

  24. Yousefpour, A., et al.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funding by the National Council for Scientific and Technological Development (CNPq, grant 311245/2021-8), Santa Catarina State Research and Innovation Support Foundation (FAPESC), Santa Catarina State University (UDESC), and developed at Laboratory of Parallel and Distributed Processing (LabP2D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Piêgas Koslovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakashita, N.K.C., Pillon, M.A., Miers, C.C., Koslovski, G.P. (2024). Investigating the Impact of Congestion Control Algorithms on Edge-Cloud Continuum. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-031-57916-5_3

Download citation

Publish with us

Policies and ethics