Skip to main content

Dynamic Parameter Estimation for Mixtures of Plackett-Luce Models

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 704))

Included in the following conference series:

  • 228 Accesses

Abstract

Traditional parameter estimation algorithms rely on static datasets whose data remain constant during program execution. However, in the real-world scenario, rank data often updates in real-time, e.g., when users perform operations, such as submitting or withdrawing rankings. This dynamic nature of rank data poses challenges for applying traditional algorithms. To address this issue, we propose parameter estimation algorithms tailored for structured partial rankings based on dynamic datasets in this paper. These dynamic datasets can be classified as extended datasets and compressed datasets. To handle each dataset type, we introduce the extension preference learning algorithm and the compression preference learning algorithm based on GMM and Elsr algorithms, respectively. These algorithms ensure a relatively consistent dataset size over time, balancing accuracy and efficiency. Experimental results conducted in this paper compare the accuracy, efficiency, and stability of various algorithms using synthetic datasets, Sushi datasets, and Irish datasets, which demonstrate the effectiveness of our proposed algorithm in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, T.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009). https://doi.org/10.1561/1500000016

    Article  Google Scholar 

  2. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 613–622 (2001). https://doi.org/10.1145/371920.372165

  3. Zhao, Z., Piech, P., Xia, L.: Learning mixtures of Plackett-Luce models. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol. 48, pp. 2906–2914 (2016). https://doi.org/10.5555/3045390.3045696

  4. Liu, A., Zhao, Z., Liao, C., Lu, P., Xia, L.: Learning Plackett-Luce mixtures from partial preferences. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4328–4335, (2019). https://doi.org/10.1609/aaai.v33i01.33014328

  5. Zhao, Z., Xia, L.: Learning mixtures of Plackett-Luce models from structured partial orders. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, no. 910, pp. 10143–10153 (2019). https://doi.org/10.5555/3454287.3455197

  6. Plackett, R.: The analysis of permutations. J. R. Stat. Soc. Ser. C Appl. Stat. 24(2), 193–202 (1975). https://doi.org/10.2307/2346567

    Article  MathSciNet  Google Scholar 

  7. Xia, L.: Learning and decision-making from rank data. In: Synthesis Lectures on Artificial Intelligence and Machine Learning, pp. 1–159 (2019). https://doi.org/10.1007/978-3-031-01582-3

  8. Soufiani, H., Chen, W., Parkes, D., Xia, L.: Generalized method-of-moments for rank aggregation. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2, pp. 2706–2714 (2013). https://doi.org/10.5555/2999792.2999914

  9. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–11 (1977). https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

    Article  MathSciNet  Google Scholar 

  10. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley, Hoboken (2007)

    Google Scholar 

  11. McLachlan, G., Peel, D.: Finite Mixture Models, pp. 81–90. Wiley, New York (2004)

    Google Scholar 

  12. Neal, R.: Bayesian methods for machine learning. NIPS Tutorial, vol. 13 (2004)

    Google Scholar 

  13. Maystre, L., Grossglauser, M.: Fast and accurate inference of Plackett-Luce models. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 1, pp. 172–180 (2015). https://doi.org/10.5555/2969239.2969259

  14. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000). https://doi.org/10.1145/347090.347107

  15. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448 (2007). https://doi.org/10.1137/1.9781611972771.42

  16. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector machines. In: International Conference on Machine Learning, pp. 487–494 (2000)

    Google Scholar 

  17. Hung, N., Huynh, V.: Integrated preference argumentation and applications in consumer behaviour analyses. Int. J. Approx. Reason. 159(108938), 1–55 (2023). https://doi.org/10.1016/j.ijar.2023.108938

  18. Coons, J., Langer, C., Ruddy, M.: Classical iterative proportional scaling of log-linear models with rational maximum likelihood estimator. Int. J. Approximate Reasoning 109043, 1–26 (2023). https://doi.org/10.1016/j.ijar.2023.109043

    Article  Google Scholar 

  19. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

    Article  Google Scholar 

  20. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(44), 1–37 (2014). https://doi.org/10.1145/2523813

    Article  Google Scholar 

  21. Kamishima, T.: Nantonac collaborative filtering: recommendation based on order responses. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 583–588 (2003). https://doi.org/10.1145/956750.956823

  22. Gormley, I., Murphy, T.: Exploring voting blocs within the Irish electorate: a mixture modeling approach. ACM Comput. Surv. 103(483), 1014–1027 (2008). https://doi.org/10.1198/016214507000001049

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Fundamental Research Funds for the Central Universities under grant JZ2023HGTB0270 and the National Natural Science Foundation of China under grants 62076087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, A., Zhang, Z., Bu, C., Li, L. (2024). Dynamic Parameter Estimation for Mixtures of Plackett-Luce Models. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 704. Springer, Cham. https://doi.org/10.1007/978-3-031-57919-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57919-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57918-9

  • Online ISBN: 978-3-031-57919-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics