Skip to main content

Assuring GDPR Conformance Through Language-Based Compliance

  • Conference paper
  • First Online:
Privacy and Identity Management. Sharing in a Digital World (Privacy and Identity 2023)

Abstract

Existing legal regulations, such as the GDPR in the European Union, exert significant pressure on businesses to embed legal principles into their information systems. These legislative provisions, expertly crafted in natural language, have raised technical challenges to be GDPR compliant. In particular, formal reasoning about compliance at the level of programming code is challenging. Available alternatives, such as manual auditing, have demonstrated limited scalability, and the absence of system-level support has led to substantial penalties for businesses and a loss of control over their personal data for users. Hence, we develop an approach that intends to reconcile the existing challenges in software implications with GDPR through programming language support. We build on earlier work introducing a privacy-aware active object language and operational semantics. To demonstrate the practicality, we here present a prototype implementation within the Maude formalism, which validates our semantics and model-checks GDPR compliance properties within any given configuration. Our work is limited to certain key concepts of the GDPR that can be interpreted at the programming level. We focus on processing rights based on user consent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The full policy language includes additional aspects of the GDPR, such as location and retention time. For simplicity, in this paper, we only explore how to deal with entities, purposes, and actions.

  2. 2.

    The Maude theories formalizing PALs operational semantics along with examples of PAL programs and property checking can be downloaded at https://github.com/Chinmayiprabhu/maudeInterpreter.git.

References

  1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Systems. The MIT Press, Cambridge (1986)

    Book  Google Scholar 

  2. Baramashetru, C., Tapia Tarifa, S.L., Owe, O.: Integrating data privacy compliance in active object languages. In: de Boer, F., Damiani, F., Hähnle, R., Broch Johnsen, E., Kamburjan, E. (eds.) Active Object Languages: Current Research Trends. LNCS, vol. 14360, pp. 263–288. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-51060-1_10, www.duo.uio.no/handle/10852/102661/

  3. Baramashetru, C.P., Tapia Tarifa, S.L., Owe, O., Gruschka, N.: A policy language to capture compliance of data protection requirements. In: ter Beek, M.H., Monahan, R. (eds.) IFM 2022. LNCS, vol. 13274, pp. 289–309. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07727-2_16

    Chapter  Google Scholar 

  4. Byun, J.-W., Bertino, E., Li, N.: Purpose based access control of complex data for privacy protection. In: Proceedings of the Tenth ACM Symposium on Access Control Models and Technologies, pp. 102–110. ACM (2005)

    Google Scholar 

  5. Cavoukian, A., Chibba, M.: Advancing privacy and security in computing, networking and systems innovations through privacy by design. In: Proceedings of the 2009 Conference of the Centre for Advanced Studies on Collaborative Research, pp. 358–360. ACM (2009)

    Google Scholar 

  6. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_22

    Chapter  Google Scholar 

  7. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv. 50(5), 76:1–76:39 (2017)

    Google Scholar 

  8. European Parliament and Council. Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (General Data Protection Regulation) (2016). http://data.europa.eu/eli/reg/2016/679/oj/eng

  9. Fischer-Hübner, S., Angulo, J., Karegar, F., Pulls, T.: Transparency, privacy and trust – technology for tracking and controlling my data disclosures: does this work? In: Habib, S.M.M., Vassileva, J., Mauw, S., Mühlhäuser, M. (eds.) IFIPTM 2016. IAICT, vol. 473, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41354-9_1

    Chapter  Google Scholar 

  10. Gürses, S., Troncoso, C., Diaz, C.: Engineering privacy by design. Comput. Priv. Data Protect. 14(3), 25 (2011)

    Google Scholar 

  11. Hayati, K., Abadi, M.: Language-based enforcement of privacy policies. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 302–313. Springer, Heidelberg (2005). https://doi.org/10.1007/11423409_19

    Chapter  Google Scholar 

  12. Hjerppe, K., Ruohonen, J., Leppänen, V.: Annotation-based static analysis for personal data protection. In: Friedewald, M., Önen, M., Lievens, E., Krenn, S., Fricker, S. (eds.) Privacy and Identity 2019. IAICT, vol. 576, pp. 343–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42504-3_22

    Chapter  Google Scholar 

  13. Karami, F., Basin, D.A. Johnsen, E.B.: DPL: a language for GDPR enforcement. In: 35th IEEE Computer Security Foundations Symposium, CSF 2022, pp. 112–129. IEEE (2022)

    Google Scholar 

  14. Kutyłowski, M., Lauks-Dutka, A., Yung, M.: GDPR – challenges for reconciling legal rules with technical reality. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 736–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_36

    Chapter  Google Scholar 

  15. Masoumzadeh, A., Joshi, J.B.D.: PuRBAC: purpose-aware role-based access control. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1104–1121. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4_12

    Chapter  Google Scholar 

  16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)

    Article  MathSciNet  Google Scholar 

  17. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebraic Methods Program. 81(7–8), 721–781 (2012)

    Article  MathSciNet  Google Scholar 

  18. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model. ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)

    Article  Google Scholar 

  19. Network, E., Agency, I.S.: Privacy and data protection by design: from policy to engineering. Publications Office (2014)

    Google Scholar 

  20. Ölveczky, P.C.: Designing Reliable Distributed Systems - A Formal Methods Approach Based on Executable Modeling in Maude. Springer, Heidelberg (2017). https://doi.org/10.1007/978-1-4471-6687-0

    Book  Google Scholar 

  21. Piras, L., et al.: DEFeND architecture: a privacy by design platform for GDPR compliance. In: Gritzalis, S., Weippl, E.R., Katsikas, S.K., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) TrustBus 2019. LNCS, vol. 11711, pp. 78–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27813-7_6

    Chapter  Google Scholar 

  22. Politou, E., Alepis, E., Patsakis, C.: Forgetting personal data and revoking consent under the GDPR: challenges and proposed solutions. J. Cybersecur. 4(1), tyy001 (2018)

    Article  Google Scholar 

  23. Ranise, S., Siswantoro, H.: Automated legal compliance checking by security policy analysis. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 361–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66284-8_30

    Chapter  Google Scholar 

  24. Schneider, G.: Is privacy by construction possible? In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 471–485. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4_28

    Chapter  Google Scholar 

  25. Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J., Wing, J.M.: Bootstrapping privacy compliance in big data systems. In: 2014 IEEE Symposium on Security and Privacy, pp. 327–342. IEEE (2014)

    Google Scholar 

  26. Spiekermann, S.: The challenges of privacy by design. Commun. ACM 55(7), 38–40 (2012)

    Article  Google Scholar 

  27. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  28. Tokas, S., Owe, O.: A formal framework for consent management. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 169–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3_10

    Chapter  Google Scholar 

  29. Tokas, S., Owe, O., Ramezanifarkhani, T.: Static checking of GDPR-related privacy compliance for object-oriented distributed systems. J. Log. Algebraic Methods Program. 125, 100733 (2022)

    Article  MathSciNet  Google Scholar 

  30. Truong, N.B., Sun, K., Lee, G.M., Guo, Y.: GDPR-compliant personal data management: a blockchain-based solution. IEEE Trans. Inf. Forensics Secur. 15, 1746–1761 (2020)

    Article  Google Scholar 

  31. Utz, C., Degeling, M., Fahl, S., Schaub, F., Holz, T.: (Un) informed consent: Studying GDPR consent notices in the field. In: Proceedings of the 2019 ACM SIGAC Conference on Computer and Communications Security, pp. 973–990. ACM (2019)

    Google Scholar 

  32. van Lieshout, M., Kool, L., van Schoonhoven, B., de Jonge, M.: Privacy by design: an alternative to existing practice in safeguarding privacy. Info 13(6), 55–68 (2011)

    Article  Google Scholar 

  33. Vargas, J.C.: Blockchain-based consent manager for GDPR compliance. Open Identity Summit 2019 (2019)

    Google Scholar 

  34. Yang, N., Barringer, H., Zhang, N.: A purpose-based access control model. In: Third International Symposium on Information Assurance and Security, pp. 143–148 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmayi Prabhu Baramashetru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baramashetru, C.P., Tapia Tarifa, S.L., Owe, O. (2024). Assuring GDPR Conformance Through Language-Based Compliance. In: Bieker, F., de Conca, S., Gruschka, N., Jensen, M., Schiering, I. (eds) Privacy and Identity Management. Sharing in a Digital World. Privacy and Identity 2023. IFIP Advances in Information and Communication Technology, vol 695. Springer, Cham. https://doi.org/10.1007/978-3-031-57978-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57978-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57977-6

  • Online ISBN: 978-3-031-57978-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics