Abstract
WiFi is a ubiquitous protocol, but exhibits flaws that become particularly critical for teams of robots in human environments. We demonstrate that our Time-Triggered WiFi (TTWiFi) protocol allows us to utilise the benefits of the hardware available in mobile robotic systems while ensuring resilience and bounded error detection in the time domain as required by teams of robots to make reliable real-time decisions. Our experiments demonstrate that TTWiFi performs equally well in static and mobile scenarios in retaining its resilience to interference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Aethon’s TUG autonomous mobile robot delivers medications, laboratory specimens, or other sensitive material within a hospital environment while using WiFi to communicate with elevators, automatic doors, and fire alarms.
- 2.
Some commercial solutions, like Aruba’s Meridian, use WiFi infrastructure for indoor positioning (www.arubanetworks.com).
References
madwifi-project.org - trac (2007). http://madwifi-project.org
For researchers | Giraff (2014). http://www.giraff.org/for-researchers/?lang=en
VGo robotic telepresence for healthcare, education and business (2014). http://www.vgocom.com
IEEE standard for information technology-telecommunications and information exchange between systems local and metropolitan area networks-specific requirements - part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534 (2016)
Discover Nao, the little humanoid robot from SoftBank Robotics | SoftBank Robotics (2018). https://www.softbankrobotics.com/emea/en/robots/nao
Frontpage - Raspbian (2018). https://www.raspbian.org
Pepper, the humanoid robot from SoftBank Robotics, a genuine companion | SoftBank Robotics (2018). https://www.softbankrobotics.com/emea/en/robots/pepper
Bartolomeu, P., Alam, M., Ferreira, J., Fonseca, J.: Implementation and analysis of wireless flexible time-triggered protocol. Ad Hoc Netw. 58, 36–53 (2017). https://doi.org/10.1016/j.adhoc.2016.11.016
Bartolomeu, P., Ferreira, J., Fonseca, J.: Enforcing flexibility in real-time wireless communications: a bandjacking enabled protocol. In: 2009 IEEE Conference on Emerging Technologies & Factory Automation, pp. 1–4 (2009). https://doi.org/10.1109/ETFA.2009.5347177
Bartolomeu, P., Fonseca, J.: Channel capture in noisy wireless contention-based communication environments. In: 2010 IEEE International Workshop on Factory Communication Systems Proceedings, pp. 23–32 (2010). https://doi.org/10.1109/WFCS.2010.5548640
Bartolomeu, P., Fonseca, J.: Towards flexible time triggered wireless communications. In: 2010 IEEE International Workshop on Factory Communication Systems Proceedings, pp. 203–206 (2010). https://doi.org/10.1109/WFCS.2010.5548603
Bazzi, A., Haxhibeqiri, J., Jarchlo, E.A., Moerman, I., Hoebeke, J.: Flexible Wi-Fi communication among mobile robots in indoor industrial environments. Mob. Inf. Syst. 2018, 3918302 (2018). https://doi.org/10.1155/2018/3918302
Bellalta, B.: IEEE 802.11ax: High-efficiency WLANs. IEEE Wireless Commun. 23(1), 38–46 (2016). https://doi.org/10.1109/MWC.2016.7422404
Diddeniya, I., Wanniarachchi, I., Gunasinghe, H., Premachandra, C., Kawanaka, H.: Human-robot communication system for an isolated environment. IEEE Access 10, 63258–63269 (2022). https://doi.org/10.1109/ACCESS.2022.3183110
Ferris, B., Fox, D., Lawrence, N.: WiFi-SLAM using Gaussian process latent variable models. In: Proceedings 20th International Joint Conference on Artificial Intelligence, pp. 2480–2485. IJCAI 2007, Morgan Kaufmann, San Francisco, USA (2007)
Flammini, A., Marioli, D., Sisinni, E., Taroni, A.: Design and implementation of a wireless Fieldbus for plastic machineries. IEEE Trans. Industr. Electron. 56(3), 747–755 (2009). https://doi.org/10.1109/TIE.2008.2011602
García-Valls, M., Casimiro, A., Reiser, H.P.: A few open problems and solutions for software technologies for dependable distributed systems. J. Syst. Archit. 73, 1–5 (2017). https://doi.org/10.1016/j.sysarc.2017.01.007, http://www.sciencedirect.com/science/article/pii/S1383762117300310, special Issue on Reliable Software Technologies for Dependable Distributed Systems
Góngora Alonso, S., Hamrioui, S., de la Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemed. e-Health 25(7), 533–540 (2023/09/10 2018). https://doi.org/10.1089/tmj.2018.0051
Habib, M.K., Baudoin, Y.: Robot-assisted risky intervention, search, rescue and environmental surveillance. Int. J. Adv. Rob. Syst. 7(1), 10 (2010). https://doi.org/10.5772/7249
Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006). https://doi.org/10.1016/j.automatica.2006.06.027, http://www.sciencedirect.com/science/article/pii/S0005109806002871
Inc., A.N.: AWUS036NHA 802.11b/g/n Long-Range USB Adapter (2009)
Jalil, A., Kobayashi, J., Saitoh, T.: Performance improvement of multi-robot data transmission in aggregated robot processing architecture with caches and QoS balancing optimization. Robotics 12(3) (2023). https://doi.org/10.3390/robotics12030087
Kabir, H., Tham, M.L., Chang, Y.C.: Internet of robotic things for mobile robots: concepts, technologies, challenges, applications, and future directions. Digital Commun. Netw. (2023). https://doi.org/10.1016/j.dcan.2023.05.006
Kleinrock, L., Tobagi, F.: Packet switching in radio channels: Part I - carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. Commun. 23(12), 1400–1416 (1975)
Kopetz, H., Ochsenreiter, W.: Clock synchronization in distributed real-time systems. IEEE Trans. Comput. C-36(8), 933–940 (1987). https://doi.org/10.1109/TC.1987.5009516
Lusty, C.: TTWiFi: Improving Wireless Communication Reliability for Mobile Robotics in Human Environments. Ph.D. thesis, School of Communication and Information technology, Griffith University (2023)
Lusty, C., Estivill-Castro, V., Hexel, R.: TTWiFi: time-triggered communication over WiFi. In: Proceedings 11th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, pp. 35–44. DIVANet 2021, Association for Computing Machinery, New York, USA (2021). https://doi.org/10.1145/3479243.3487298
Mac, T.T., Copot, C., Ionescu, C.M.: Design and implementation of a real-time autonomous navigation system applied to lego robots. IFAC-PapersOnLine 51(4), 340–345 (2018). https://doi.org/10.1016/j.ifacol.2018.06.088, 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control PID
Madhevan, B., Sreekumar, M.: Analysis of communication delay and packet loss during localization among mobile robots. In: Berretti, S., Thampi, S.M., Dasgupta, S. (eds.) Intelligent Systems Technologies and Applications. AISC, vol. 385, pp. 3–12. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23258-4_1
Nertinger, S., Kirschner, R.J., Naceri, A., Haddadin, S.: Acceptance of remote assistive robots with and without human-in-the-loop for healthcare applications. Int. J. Soc. Robot. (2022). https://doi.org/10.1007/s12369-022-00931-9
Pahlavan, K., Krishnamurthy, P.: Evolution and impact of Wi-Fi technology and applications: a historical perspective. Int. J. Wirel. Inf. Netw. 28(1), 3–19 (2021). https://doi.org/10.1007/s10776-020-00501-8
Park, P., Coleri Ergen, S., Fischione, C., Lu, C., Johansson, K.H.: Wireless network design for control systems: a survey. IEEE Commun. Surv. Tutorials 20(2), 978–1013 (2018). https://doi.org/10.1109/COMST.2017.2780114
Patti, G., Alderisi, G., Lo Bello, L.: SchedWiFi: an innovative approach to support scheduled traffic in ad-hoc industrial IEEE 802.11 networks. In: 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), pp. 1–9 (2015). https://doi.org/10.1109/ETFA.2015.7301460
Pereira, N., Andersson, B., Tovar, E.: WiDom: a dominance protocol for wireless medium access. IEEE Trans. Industr. Inf. 3(2), 120–130 (2007). https://doi.org/10.1109/TII.2007.898461
Poberezkin, E., Roozbahani, H., Alizadeh, M., Handroos, H.: Development of a robust Wi-Fi/4G-based ROS communication platform for an assembly and repair mobile robot with reliable behavior under unstable network or connection failure. Artif. Life and Robot. 27(4), 786–795 (2022). https://doi.org/10.1007/s10015-022-00792-5
Roozen, I., Raedts, M., Yanycheva, A.: Are retail customers ready for service robot assistants? Int. J. Soc. Robot. 15(1), 15–25 (2023). https://doi.org/10.1007/s12369-022-00949-z
Rowe, A., Mangharam, R., Rajkumar, R.: Rt-link: a global time-synchronized link protocol for sensor networks. Ad Hoc Netw. 6(8), 1201–1220 (2008). https://doi.org/10.1016/j.adhoc.2007.11.008
Santos, F.: An adaptive TDMA protocol for soft real-time wireless communication among mobile computing agents. In: Proceedings of the Workshop on Architectures for Cooperative Embedded Real-Time Systems (satellite of RTSS), pp. 5–8 (2004)
Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7 (2020). https://doi.org/10.3389/frobt.2020.00036
Simoens, P., Dragone, M., Saffiotti, A.: The internet of robotic things: a review of concept, added value and applications. Int. J. Adv. Rob. Syst. 15(1), 1729881418759424 (2018). https://doi.org/10.1177/1729881418759424
Sobrinho, J.L., Krishnakumar, A.S.: Quality-of-service in ad hoc carrier sense multiple access wireless networks. IEEE J. Sel. Areas Commun. 17(8), 1353–1368 (1999). https://doi.org/10.1109/49.779919
Song, J., et al.: WirelessHART: applying wireless technology in real-time industrial process control. In: IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 377–386 (2008)
Tang, C., Sun, W., Zhang, X., Zheng, J., Sun, J., Liu, C.: A sequential-multi-decision scheme for WiFi localization using vision-based refinement. IEEE Trans. Mob. Comput. 1–16 (2023). https://doi.org/10.1109/TMC.2023.3253893
Tardioli, D., Villarroel, J.L.: Real time communications over 802.11: RT-WMP. In: 2007 IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 1–11 (Oct 2007). https://doi.org/10.1109/MOBHOC.2007.4428607
Tardioli, D.: Real time communications in wireless ad-hoc networks. The RT-WMP protocol. Ph.D. thesis, Universidad de Zaragoza (2010)
Tardioli, D., Parasuraman, R., Ögren, P.: Pound: a multi-master ROS node for reducing delay and jitter in wireless multi-robot networks. Robot. Auton. Syst. 111, 73 – 87 (2019). https://doi.org/10.1016/j.robot.2018.10.009, http://www.sciencedirect.com/science/article/pii/S0921889017309144
Thompson, K., Ritchie, D.M.: UNIX Programmer’s Manual. Bell Telephone Laboratories (1975)
Tobagi, F., Kleinrock, L.: Packet switching in radio channels: part II - the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Trans. Commun. 23(12), 1417–1433 (1975)
Vanhoef, M.: modwifi (2014). https://github.com/vanhoefm/modwifi
O, V., et al.: Internet of robotic things intelligent connectivity and platforms. Front. Robot. AI 7, 104 (2020). https://doi.org/10.3389/frobt.2020.00104
Wei, Y., Leng, Q., Han, S., Mok, A.K., Zhang, W., Tomizuka, M.: RT-WiFi: real-time high-speed communication protocol for wireless cyber-physical control applications. In: 2013 IEEE 34th Real-Time Systems Symposium, pp. 140–149 (2013)
Wichmann, A., Demirelli Okkalioglu, B., Korkmaz, T.: The integration of mobile (tele) robotics and wireless sensor networks: a survey. Comput. Commun. 51, 21–35 (2014). https://doi.org/10.1016/j.comcom.2014.06.005
Xu, Y., Zhou, S., Cao, Q., Zheng, B., Xiong, Z., Ni, Y.: Time-triggered reservation for cooperative random access in wireless LANs. In: 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), pp. 1–7. IEEE (2023). https://doi.org/10.1109/VTC2023-Spring57618.2023.10199862
Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst. 10(12), 399 (2013). https://doi.org/10.5772/57313
Zhang, J., Han, G., Qian, Y.: Queuing theory based co-channel interference analysis approach for high-density wireless local area networks. Sensors 16(9) (2016). https://doi.org/10.3390/s16091348
Zhang, L., et al.: WiFi-based indoor robot positioning using deep fuzzy forests. IEEE Internet Things J. 7(11), 10773–10781 (2020). https://doi.org/10.1109/JIOT.2020.2986685
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Lusty, C., Estivill-Castro, V., Hexel, R. (2024). TTWiFi: Time-Triggered WiFi for Mobile Robotics in Human Environments. In: Maglaras, L.A., Douligeris, C. (eds) Wireless Internet. WiCON 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-58053-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-58053-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58052-9
Online ISBN: 978-3-031-58053-6
eBook Packages: Computer ScienceComputer Science (R0)