Skip to main content

TTWiFi: Time-Triggered WiFi for Mobile Robotics in Human Environments

  • Conference paper
  • First Online:
Wireless Internet (WiCON 2023)

Abstract

WiFi is a ubiquitous protocol, but exhibits flaws that become particularly critical for teams of robots in human environments. We demonstrate that our Time-Triggered WiFi (TTWiFi) protocol allows us to utilise the benefits of the hardware available in mobile robotic systems while ensuring resilience and bounded error detection in the time domain as required by teams of robots to make reliable real-time decisions. Our experiments demonstrate that TTWiFi performs equally well in static and mobile scenarios in retaining its resilience to interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Aethon’s TUG autonomous mobile robot delivers medications, laboratory specimens, or other sensitive material within a hospital environment while using WiFi to communicate with elevators, automatic doors, and fire alarms.

  2. 2.

    Some commercial solutions, like Aruba’s Meridian, use WiFi infrastructure for indoor positioning (www.arubanetworks.com).

References

  1. madwifi-project.org - trac (2007). http://madwifi-project.org

  2. For researchers | Giraff (2014). http://www.giraff.org/for-researchers/?lang=en

  3. VGo robotic telepresence for healthcare, education and business (2014). http://www.vgocom.com

  4. IEEE standard for information technology-telecommunications and information exchange between systems local and metropolitan area networks-specific requirements - part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534 (2016)

    Google Scholar 

  5. Discover Nao, the little humanoid robot from SoftBank Robotics | SoftBank Robotics (2018). https://www.softbankrobotics.com/emea/en/robots/nao

  6. Frontpage - Raspbian (2018). https://www.raspbian.org

  7. Pepper, the humanoid robot from SoftBank Robotics, a genuine companion | SoftBank Robotics (2018). https://www.softbankrobotics.com/emea/en/robots/pepper

  8. Bartolomeu, P., Alam, M., Ferreira, J., Fonseca, J.: Implementation and analysis of wireless flexible time-triggered protocol. Ad Hoc Netw. 58, 36–53 (2017). https://doi.org/10.1016/j.adhoc.2016.11.016

    Article  Google Scholar 

  9. Bartolomeu, P., Ferreira, J., Fonseca, J.: Enforcing flexibility in real-time wireless communications: a bandjacking enabled protocol. In: 2009 IEEE Conference on Emerging Technologies & Factory Automation, pp. 1–4 (2009). https://doi.org/10.1109/ETFA.2009.5347177

  10. Bartolomeu, P., Fonseca, J.: Channel capture in noisy wireless contention-based communication environments. In: 2010 IEEE International Workshop on Factory Communication Systems Proceedings, pp. 23–32 (2010). https://doi.org/10.1109/WFCS.2010.5548640

  11. Bartolomeu, P., Fonseca, J.: Towards flexible time triggered wireless communications. In: 2010 IEEE International Workshop on Factory Communication Systems Proceedings, pp. 203–206 (2010). https://doi.org/10.1109/WFCS.2010.5548603

  12. Bazzi, A., Haxhibeqiri, J., Jarchlo, E.A., Moerman, I., Hoebeke, J.: Flexible Wi-Fi communication among mobile robots in indoor industrial environments. Mob. Inf. Syst. 2018, 3918302 (2018). https://doi.org/10.1155/2018/3918302

    Article  Google Scholar 

  13. Bellalta, B.: IEEE 802.11ax: High-efficiency WLANs. IEEE Wireless Commun. 23(1), 38–46 (2016). https://doi.org/10.1109/MWC.2016.7422404

  14. Diddeniya, I., Wanniarachchi, I., Gunasinghe, H., Premachandra, C., Kawanaka, H.: Human-robot communication system for an isolated environment. IEEE Access 10, 63258–63269 (2022). https://doi.org/10.1109/ACCESS.2022.3183110

    Article  Google Scholar 

  15. Ferris, B., Fox, D., Lawrence, N.: WiFi-SLAM using Gaussian process latent variable models. In: Proceedings 20th International Joint Conference on Artificial Intelligence, pp. 2480–2485. IJCAI 2007, Morgan Kaufmann, San Francisco, USA (2007)

    Google Scholar 

  16. Flammini, A., Marioli, D., Sisinni, E., Taroni, A.: Design and implementation of a wireless Fieldbus for plastic machineries. IEEE Trans. Industr. Electron. 56(3), 747–755 (2009). https://doi.org/10.1109/TIE.2008.2011602

    Article  Google Scholar 

  17. García-Valls, M., Casimiro, A., Reiser, H.P.: A few open problems and solutions for software technologies for dependable distributed systems. J. Syst. Archit. 73, 1–5 (2017). https://doi.org/10.1016/j.sysarc.2017.01.007, http://www.sciencedirect.com/science/article/pii/S1383762117300310, special Issue on Reliable Software Technologies for Dependable Distributed Systems

  18. Góngora Alonso, S., Hamrioui, S., de la Torre Díez, I., Motta Cruz, E., López-Coronado, M., Franco, M.: Social robots for people with aging and dementia: a systematic review of literature. Telemed. e-Health 25(7), 533–540 (2023/09/10 2018). https://doi.org/10.1089/tmj.2018.0051

  19. Habib, M.K., Baudoin, Y.: Robot-assisted risky intervention, search, rescue and environmental surveillance. Int. J. Adv. Rob. Syst. 7(1), 10 (2010). https://doi.org/10.5772/7249

    Article  Google Scholar 

  20. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006). https://doi.org/10.1016/j.automatica.2006.06.027, http://www.sciencedirect.com/science/article/pii/S0005109806002871

  21. Inc., A.N.: AWUS036NHA 802.11b/g/n Long-Range USB Adapter (2009)

    Google Scholar 

  22. Jalil, A., Kobayashi, J., Saitoh, T.: Performance improvement of multi-robot data transmission in aggregated robot processing architecture with caches and QoS balancing optimization. Robotics 12(3) (2023). https://doi.org/10.3390/robotics12030087

  23. Kabir, H., Tham, M.L., Chang, Y.C.: Internet of robotic things for mobile robots: concepts, technologies, challenges, applications, and future directions. Digital Commun. Netw. (2023). https://doi.org/10.1016/j.dcan.2023.05.006

    Article  Google Scholar 

  24. Kleinrock, L., Tobagi, F.: Packet switching in radio channels: Part I - carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. Commun. 23(12), 1400–1416 (1975)

    Article  Google Scholar 

  25. Kopetz, H., Ochsenreiter, W.: Clock synchronization in distributed real-time systems. IEEE Trans. Comput. C-36(8), 933–940 (1987). https://doi.org/10.1109/TC.1987.5009516

  26. Lusty, C.: TTWiFi: Improving Wireless Communication Reliability for Mobile Robotics in Human Environments. Ph.D. thesis, School of Communication and Information technology, Griffith University (2023)

    Google Scholar 

  27. Lusty, C., Estivill-Castro, V., Hexel, R.: TTWiFi: time-triggered communication over WiFi. In: Proceedings 11th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, pp. 35–44. DIVANet 2021, Association for Computing Machinery, New York, USA (2021). https://doi.org/10.1145/3479243.3487298

  28. Mac, T.T., Copot, C., Ionescu, C.M.: Design and implementation of a real-time autonomous navigation system applied to lego robots. IFAC-PapersOnLine 51(4), 340–345 (2018). https://doi.org/10.1016/j.ifacol.2018.06.088, 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control PID

  29. Madhevan, B., Sreekumar, M.: Analysis of communication delay and packet loss during localization among mobile robots. In: Berretti, S., Thampi, S.M., Dasgupta, S. (eds.) Intelligent Systems Technologies and Applications. AISC, vol. 385, pp. 3–12. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23258-4_1

    Chapter  Google Scholar 

  30. Nertinger, S., Kirschner, R.J., Naceri, A., Haddadin, S.: Acceptance of remote assistive robots with and without human-in-the-loop for healthcare applications. Int. J. Soc. Robot. (2022). https://doi.org/10.1007/s12369-022-00931-9

  31. Pahlavan, K., Krishnamurthy, P.: Evolution and impact of Wi-Fi technology and applications: a historical perspective. Int. J. Wirel. Inf. Netw. 28(1), 3–19 (2021). https://doi.org/10.1007/s10776-020-00501-8

    Article  Google Scholar 

  32. Park, P., Coleri Ergen, S., Fischione, C., Lu, C., Johansson, K.H.: Wireless network design for control systems: a survey. IEEE Commun. Surv. Tutorials 20(2), 978–1013 (2018). https://doi.org/10.1109/COMST.2017.2780114

    Article  Google Scholar 

  33. Patti, G., Alderisi, G., Lo Bello, L.: SchedWiFi: an innovative approach to support scheduled traffic in ad-hoc industrial IEEE 802.11 networks. In: 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), pp. 1–9 (2015). https://doi.org/10.1109/ETFA.2015.7301460

  34. Pereira, N., Andersson, B., Tovar, E.: WiDom: a dominance protocol for wireless medium access. IEEE Trans. Industr. Inf. 3(2), 120–130 (2007). https://doi.org/10.1109/TII.2007.898461

    Article  Google Scholar 

  35. Poberezkin, E., Roozbahani, H., Alizadeh, M., Handroos, H.: Development of a robust Wi-Fi/4G-based ROS communication platform for an assembly and repair mobile robot with reliable behavior under unstable network or connection failure. Artif. Life and Robot. 27(4), 786–795 (2022). https://doi.org/10.1007/s10015-022-00792-5

    Article  Google Scholar 

  36. Roozen, I., Raedts, M., Yanycheva, A.: Are retail customers ready for service robot assistants? Int. J. Soc. Robot. 15(1), 15–25 (2023). https://doi.org/10.1007/s12369-022-00949-z

    Article  Google Scholar 

  37. Rowe, A., Mangharam, R., Rajkumar, R.: Rt-link: a global time-synchronized link protocol for sensor networks. Ad Hoc Netw. 6(8), 1201–1220 (2008). https://doi.org/10.1016/j.adhoc.2007.11.008

    Article  Google Scholar 

  38. Santos, F.: An adaptive TDMA protocol for soft real-time wireless communication among mobile computing agents. In: Proceedings of the Workshop on Architectures for Cooperative Embedded Real-Time Systems (satellite of RTSS), pp. 5–8 (2004)

    Google Scholar 

  39. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7 (2020). https://doi.org/10.3389/frobt.2020.00036

  40. Simoens, P., Dragone, M., Saffiotti, A.: The internet of robotic things: a review of concept, added value and applications. Int. J. Adv. Rob. Syst. 15(1), 1729881418759424 (2018). https://doi.org/10.1177/1729881418759424

    Article  Google Scholar 

  41. Sobrinho, J.L., Krishnakumar, A.S.: Quality-of-service in ad hoc carrier sense multiple access wireless networks. IEEE J. Sel. Areas Commun. 17(8), 1353–1368 (1999). https://doi.org/10.1109/49.779919

    Article  Google Scholar 

  42. Song, J., et al.: WirelessHART: applying wireless technology in real-time industrial process control. In: IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 377–386 (2008)

    Google Scholar 

  43. Tang, C., Sun, W., Zhang, X., Zheng, J., Sun, J., Liu, C.: A sequential-multi-decision scheme for WiFi localization using vision-based refinement. IEEE Trans. Mob. Comput. 1–16 (2023). https://doi.org/10.1109/TMC.2023.3253893

  44. Tardioli, D., Villarroel, J.L.: Real time communications over 802.11: RT-WMP. In: 2007 IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 1–11 (Oct 2007). https://doi.org/10.1109/MOBHOC.2007.4428607

  45. Tardioli, D.: Real time communications in wireless ad-hoc networks. The RT-WMP protocol. Ph.D. thesis, Universidad de Zaragoza (2010)

    Google Scholar 

  46. Tardioli, D., Parasuraman, R., Ögren, P.: Pound: a multi-master ROS node for reducing delay and jitter in wireless multi-robot networks. Robot. Auton. Syst. 111, 73 – 87 (2019). https://doi.org/10.1016/j.robot.2018.10.009, http://www.sciencedirect.com/science/article/pii/S0921889017309144

  47. Thompson, K., Ritchie, D.M.: UNIX Programmer’s Manual. Bell Telephone Laboratories (1975)

    Google Scholar 

  48. Tobagi, F., Kleinrock, L.: Packet switching in radio channels: part II - the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Trans. Commun. 23(12), 1417–1433 (1975)

    Article  Google Scholar 

  49. Vanhoef, M.: modwifi (2014). https://github.com/vanhoefm/modwifi

  50. O, V., et al.: Internet of robotic things intelligent connectivity and platforms. Front. Robot. AI 7, 104 (2020). https://doi.org/10.3389/frobt.2020.00104

    Article  Google Scholar 

  51. Wei, Y., Leng, Q., Han, S., Mok, A.K., Zhang, W., Tomizuka, M.: RT-WiFi: real-time high-speed communication protocol for wireless cyber-physical control applications. In: 2013 IEEE 34th Real-Time Systems Symposium, pp. 140–149 (2013)

    Google Scholar 

  52. Wichmann, A., Demirelli Okkalioglu, B., Korkmaz, T.: The integration of mobile (tele) robotics and wireless sensor networks: a survey. Comput. Commun. 51, 21–35 (2014). https://doi.org/10.1016/j.comcom.2014.06.005

    Article  Google Scholar 

  53. Xu, Y., Zhou, S., Cao, Q., Zheng, B., Xiong, Z., Ni, Y.: Time-triggered reservation for cooperative random access in wireless LANs. In: 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), pp. 1–7. IEEE (2023). https://doi.org/10.1109/VTC2023-Spring57618.2023.10199862

  54. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst. 10(12), 399 (2013). https://doi.org/10.5772/57313

    Article  Google Scholar 

  55. Zhang, J., Han, G., Qian, Y.: Queuing theory based co-channel interference analysis approach for high-density wireless local area networks. Sensors 16(9) (2016). https://doi.org/10.3390/s16091348

  56. Zhang, L., et al.: WiFi-based indoor robot positioning using deep fuzzy forests. IEEE Internet Things J. 7(11), 10773–10781 (2020). https://doi.org/10.1109/JIOT.2020.2986685

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Estivill-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lusty, C., Estivill-Castro, V., Hexel, R. (2024). TTWiFi: Time-Triggered WiFi for Mobile Robotics in Human Environments. In: Maglaras, L.A., Douligeris, C. (eds) Wireless Internet. WiCON 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-58053-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58053-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58052-9

  • Online ISBN: 978-3-031-58053-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics