Skip to main content

Modular, Label-Efficient Dataset Generation for Instrument Detection for Robotic Scrub Nurses

  • Conference paper
  • First Online:
Data Augmentation, Labelling, and Imperfections (MICCAI 2023)

Abstract

Surgical instrument detection is a fundamental task of a robotic scrub nurse. For this, image-based deep learning techniques are effective but usually demand large amounts of annotated data, whose creation is expensive and time-consuming. In this work, we propose a strategy based on the copy-paste technique for the generation of reliable synthetic image training data with a minimal amount of annotation effort. Our approach enables the efficient in situ creation of datasets for specific surgeries and contexts. We study the amount of employed manually annotated data and training set sizes on our model’s performance, as well as different blending techniques for improved training data. We achieve 91.9 box mAP and 91.6 mask mAP, training solely on synthetic data, in a real-world scenario. Our evaluation relies on an annotated image dataset of the wisdom teeth extraction surgery set, created in an actual operating room. This dataset, the corresponding code, and further data are made publicly available (https://github.com/Jorebs/Modular-Label-Efficient-Dataset-Generation-for-Instrument-Detection-for-Robotic-Scrub-Nurses).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marć, M., Bartosiewicz, A., Burzyńska, J., Chmiel, Z., Januszewicz, P.: A nursing shortage-a prospect of global and local policies. Int. Nurs. Rev. 66(1), 9–16 (2019)

    Article  Google Scholar 

  2. Haczyński, J., Skrzypczak, Z., Winter, M.: Nurses in Poland-immediate action needed. Eng. Manag. Prod. Serv. 9(2), 97–104 (2017)

    Google Scholar 

  3. Lowman, G.H., Harms, P.D.: Addressing the nurse workforce crisis: a call for greater integration of the organizational behavior, human resource management and nursing literatures. J. Manag. Psychol. 37(3), 294–303 (2022)

    Article  Google Scholar 

  4. Harms, P.D.: Nursing: a critical profession in a perilous time. Ind. Organ. Psychol. 14(1–2), 264–266 (2021)

    Article  Google Scholar 

  5. Zemmar, A., Lozano, A.M., Nelson, B.J.: The rise of robots in surgical environments during COVID-19. Nat. Mach. Intell. 2(10), 566–572 (2020)

    Article  Google Scholar 

  6. Kyrarini, M., et al.: A survey of robots in healthcare. Technologies 9(1), 8 (2021)

    Article  Google Scholar 

  7. Appendectomy Set, New Med Instruments. https://new-medinstruments.com/appendectomy-set.html. Accessed 26 May 2023

  8. Glaucoma Surgical Instrument Set, New Med Instruments. https://new-medinstruments.com/surgery-sets/general-surgery-instruments-sets.html/glaucoma-surgical-instrument-set.html. Accessed 26 May 2023

  9. Major General Surgery Set, New Med Instruments. https://new-medinstruments.com/surgery-sets/general-surgery-instruments-sets.html/general-surgery-set.html. Accessed 26 May 2023

  10. AlHajj, H., Lamard, M., Conze, P.H., et al.: Challenge on automatic tool annotation for cataract surgery: cataracts. Med. Image Anal. 52, 24–41 (2019). https://doi.org/10.1016/j.media.2018.11.00

    Article  Google Scholar 

  11. Allan, M., Shvets, A., Kurmann, T., et al.: 2017 robotic instrument segmentation challenge. ArXiv arXiv:1902:06426 (2019)

  12. Ross, T., Reinke, A., Full, P.M., et al.: Robust medical instrument segmentation challenge. ArXiv preprint (2019)

    Google Scholar 

  13. Twinanda, A.P., Shehata, S., Mutter, D., et al.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36, 86–97 (2017). https://doi.org/10.1109/TMI.2016.2593957

    Article  Google Scholar 

  14. Rodrigues, M., Mayo, M., Patros, P.: Evaluation of deep learning techniques on a novel hierarchical surgical tool dataset. In: Long, G., Yu, X., Wang, S. (eds.) AI 2021. LNCS, vol. 13151, pp. 169–180. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_14

    Chapter  Google Scholar 

  15. Badilla-Solórzano, J., Spindeldreier, S., Ihler, S., Gellrich, N.C., Spalthoff, S.: Deep-learning-based instrument detection for intra-operative robotic assistance. Int. J. Comput. Assist. Radiol. Surg. 17(9), 1685–1695 (2022)

    Article  Google Scholar 

  16. Peng, H., et al.: Reducing annotating load: active learning with synthetic images in surgical instrument segmentation. arXiv preprint arXiv:2108.03534 (2021)

  17. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis for instance detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1301–1310 (2017)

    Google Scholar 

  18. Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object detection datasets. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 364–380 (2018)

    Google Scholar 

  19. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928 (2021)

    Google Scholar 

  20. Wang, A., Islam, M., Xu, M., Ren, H.: Rethinking surgical instrument segmentation: a background image can be all you need. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 355–364. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_34

    Chapter  Google Scholar 

  21. Garcia-Peraza-Herrera, L.C., Fidon, L., D’Ettorre, C., Stoyanov, D., Vercauteren, T., Ourselin, S.: Image compositing for segmentation of surgical tools without manual annotations. IEEE Trans. Med. Imaging 40(5), 1450–1460 (2021)

    Article  Google Scholar 

  22. Hasty: Adaptive Automation for Vision AI. 2023 Hasty GmbH. https://app.hasty.ai. Accessed 28 May 2023

  23. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  24. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH 2003 Papers, pp. 313–318 (2003)

    Google Scholar 

  26. Jocher, G., et al.: ultralytics/yolov5: v7. 0-YOLOv5 SOTA realtime instance segmentation. Zenodo (2022)

    Google Scholar 

  27. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (version 8.0.0) [computer software]. https://github.com/ultralytics/ultralytics. Accessed 1 June 2023

  28. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  29. Grammatikopoulou, M., et al.: CaDIS: cataract dataset for surgical RGB-image segmentation. Med. Image Anal. 71, 102053 (2021)

    Article  Google Scholar 

  30. Jiang, W., Xia, T., Wang, Z., Jia, F.: Semi-supervised surgical tool detection based on highly confident pseudo labeling and strong augmentation driven consistency. In: Engelhardt, S., et al. (eds.) DGM4MICCAI DALI 2021. LNCS, vol. 13003, pp. 154–162. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88210-5_14

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are deeply thankful for the support provided by the University of Costa Rica, which enabled the creation of this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Badilla-Solórzano .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1947 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badilla-Solórzano, J., Gellrich, NC., Seel, T., Ihler, S. (2024). Modular, Label-Efficient Dataset Generation for Instrument Detection for Robotic Scrub Nurses. In: Xue, Y., Chen, C., Chen, C., Zuo, L., Liu, Y. (eds) Data Augmentation, Labelling, and Imperfections. MICCAI 2023. Lecture Notes in Computer Science, vol 14379. Springer, Cham. https://doi.org/10.1007/978-3-031-58171-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58171-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58170-0

  • Online ISBN: 978-3-031-58171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics