Skip to main content

A Realistic Collimated X-Ray Image Simulation Pipeline

  • Conference paper
  • First Online:
Data Augmentation, Labelling, and Imperfections (MICCAI 2023)

Abstract

Collimator detection remains a challenging task in X-ray systems with unreliable or non-available information about the detectors position relative to the source. This paper presents a physically motivated image processing pipeline for simulating the characteristics of collimator shadows in X-ray images. By generating randomized labels for collimator shapes and locations, incorporating scattered radiation simulation, and including Poisson noise, the pipeline enables the expansion of limited datasets for training deep neural networks. We validate the proposed pipeline by a qualitative and quantitative comparison against real collimator shadows. Furthermore, it is demonstrated that utilizing simulated data within our deep learning framework not only serves as a suitable substitute for actual collimators but also enhances the generalization performance when applied to real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowles, C., et al.: Gan augmentation: augmenting training data using generative adversarial networks. arXiv preprint arXiv:1810.10863 (2018)

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. ArXiv abs/1706.05587 (2017)

    Google Scholar 

  3. Eckert, D., et al.: Deep learning based denoising of mammographic x-ray images: an investigation of loss functions and their detail-preserving properties. In: Medical Imaging 2022: Physics of Medical Imaging, vol. 12031, pp. 455–462. SPIE (2022)

    Google Scholar 

  4. Eckert, D., Vesal, S., Ritschl, L., Kappler, S., Maier, A.: Deep learning-based denoising of mammographic images using physics-driven data augmentation. In: Bildverarbeitung für die Medizin 2020. I, pp. 94–100. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-29267-6_21

    Chapter  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020). https://doi.org/10.1145/3422622

    Article  MathSciNet  Google Scholar 

  6. Kawashita, I., Aoyama, M., Kajiyama, T., Asada, N.: Collimation detection in digital radiographs using plane detection Hough transform. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2774, pp. 394–401. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45226-3_54

    Chapter  Google Scholar 

  7. Kora Venu, S., Ravula, S.: Evaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray images. Future Internet 13(1), 8 (2020)

    Article  Google Scholar 

  8. Krieger, H.: Grundlagen der Strahlungsphysik und des Strahlenschutzes, vol. 2. Springer, Berlin (2007)

    Google Scholar 

  9. Luckner, C., Mertelmeier, T., Maier, A., Ritschl, L.: Estimation of the source-detector alignment of cone-beam x-ray systems using collimator edge tracking. In: CT Meeting (2018)

    Google Scholar 

  10. Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: Chest x-ray generation and data augmentation for cardiovascular abnormality classification. In: Medical Imaging 2018: Image Processing, vol. 10574, pp. 415–420. SPIE (2018)

    Google Scholar 

  11. Mao, H., Peng, Z., Dennerlein, F., Shinagawa, Y., Zhan, Y., Zhou, X.S.: Multi-view learning based robust collimation detection in digital radiographs. In: Medical Imaging 2014: Image Processing, vol. 9034, pp. 525–530. SPIE (2014)

    Google Scholar 

  12. Ng, M.F., Hargreaves, C.A.: Generative adversarial networks for the synthesis of chest x-ray images. Eng. Proc. 31(1), 84 (2023)

    Google Scholar 

  13. Ohnesorge, B., Flohr, T., Klingenbeck-Regn, K.: Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur. Radiol. 9(3), 563–569 (1999)

    Article  Google Scholar 

  14. Sisniega, A., et al.: Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Med. Phys. 40(5), 051915 (2013)

    Article  Google Scholar 

  15. Xu, S., Chen, G., Li, W., Xiang, X.: A physics-driven x-ray image data augmentation method for automated threat detection in nuclear facility entrancement. In: International Conference on Nuclear Engineering, vol. 86397, p. V005T05A041. American Society of Mechanical Engineers (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin El-Zein .

Editor information

Editors and Affiliations

Ethics declarations

Disclaimer

The concepts and information presented in this paper are based on research and are not commercially available.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Zein, B. et al. (2024). A Realistic Collimated X-Ray Image Simulation Pipeline. In: Xue, Y., Chen, C., Chen, C., Zuo, L., Liu, Y. (eds) Data Augmentation, Labelling, and Imperfections. MICCAI 2023. Lecture Notes in Computer Science, vol 14379. Springer, Cham. https://doi.org/10.1007/978-3-031-58171-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58171-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58170-0

  • Online ISBN: 978-3-031-58171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics