Skip to main content

Clinically Focussed Evaluation of Anomaly Detection and Localisation Methods Using Inpatient CT Head Data

  • Conference paper
  • First Online:
Data Augmentation, Labelling, and Imperfections (MICCAI 2023)

Abstract

Anomaly detection approaches in medical imaging show promise in reducing the need for labelled data. However, the question of how to evaluate anomaly detection algorithms remains challenging, both in terms of the data and the metrics. In this work, we take a cohort of inpatient CT head scans from an elderly stroke patient population containing a variety of anomalies, and treat the associated radiology reports as the reference for clinically relevant findings which should be detected by an anomaly detection algorithm. We apply two state-of-the-art anomaly detection methods to the data, namely denoising autoencoder (DAE) and context-to-local feature matching (CLFM) models. We then extract bounding boxes from the predicted anomaly score heatmaps, which we treat as candidate anomaly detections. A clinical evaluation is then conducted in which 3 radiologists rate the candidate anomalies with respect to their detection and localisation accuracy, by assigning the corresponding report sentence where a clinically relevant anomaly is correctly detected, and rating localisation according to a 3-point scale (good, partial, poor). We find that neither method exhibits sufficiently high recall for clinical use, even at low detection thresholds, although anomaly detection shows promise as a scalable approach for detecting clinically relevant findings. We highlight that selection of the optimal thresholds and extraction of discrete anomaly predictions (e.g. bounding boxes) are underexplored topics in anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://icaird.com.

  2. 2.

    West of Scotland Safe Haven ethical approval number GSH19NE004.

References

  1. Flood fill - skimage v0.19.2 docs. https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_floodfill.html. Accessed 24 Apr 2023

  2. Interactive figures - matplotlib 3.6.3 documentation. https://matplotlib.org/stable/users/explain/interactive.html. Accessed 24 Apr 2023

  3. Jupyter widgets - jupyter widgets 8.0.2 documentation. https://ipywidgets.readthedocs.io/en/stable/. Accessed 24 Apr 2023

  4. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 101952 (2021)

    Google Scholar 

  5. Chilamkurthy, S., et al.: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162), 2388–2396 (2018)

    Article  Google Scholar 

  6. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: industrial-strength natural language processing in Python (2020). https://doi.org/10.5281/zenodo.1212303

  7. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  8. Kascenas, A., Pugeault, N., O’Neil, A.Q.: Denoising autoencoders for unsupervised anomaly detection in brain MRI. In: International Conference on Medical Imaging with Deep Learning, pp. 653–664. PMLR (2022)

    Google Scholar 

  9. Kascenas, A., et al.: The role of noise in denoising models for anomaly detection in medical images. arXiv preprint arXiv:2301.08330 (2023)

  10. Kascenas, A., Young, R., Jensen, B.S., Pugeault, N., O’Neil, A.Q.: Anomaly detection via context and local feature matching. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  11. Kluyver, T., et al.: Jupyter notebooks - a publishing format for reproducible computational workflows. In: Loizides, F., Scmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press, The Netherlands (2016). https://eprints.soton.ac.uk/403913/

  12. Lagogiannis, I., Meissen, F., Kaissis, G., Rueckert, D.: Unsupervised pathology detection: a deep dive into the state of the art. arXiv preprint arXiv:2303.00609 (2023)

  13. Lee, S., et al.: Emergency triage of brain computed tomography via anomaly detection with a deep generative model. Nat. Commun. 13(1), 4251 (2022)

    Article  Google Scholar 

  14. Meissen, F., Wiestler, B., Kaissis, G., Rueckert, D.: On the pitfalls of using the residual as anomaly score. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=ZsoHLeupa1D

  15. Organization, W.H.: ICD-10: international statistical classification of diseases and related health problems: tenth revision (2004)

    Google Scholar 

  16. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Program. Biomed. 106236 (2021). https://doi.org/10.1016/j.cmpb.2021.106236, https://www.sciencedirect.com/science/article/pii/S0169260721003102

  17. Pinaya, W.H., et al.: Fast unsupervised brain anomaly detection and segmentation with diffusion models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 705–714. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_67

    Chapter  Google Scholar 

  18. Reddi, S., Kale, S., Kumar, S.: On the convergence of Adam and beyond. In: International Conference on Learning Representations (2018)

    Google Scholar 

  19. Schrempf, P., et al.: Templated text synthesis for expert-guided multi-label extraction from radiology reports. Mach. Learn. Knowl. Extract. 3(2), 299–317 (2021). https://doi.org/10.3390/make3020015, https://www.mdpi.com/2504-4990/3/2/15

  20. Smith, A.R.: Tint fill. In: Proceedings of the 6th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1979, pp. 276–283. Association for Computing Machinery, New York (1979). https://doi.org/10.1145/800249.807456

  21. Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-domain Operations Applications, vol. 11006, pp. 369–386. SPIE (2019)

    Google Scholar 

  22. Tschuchnig, M.E., Gadermayr, M.: Anomaly detection in medical imaging - a mini review. In: Haber, P., Lampoltshammer, T.J., Leopold, H., Mayr, M. (eds.) Data Science – Analytics and Applications, pp. 33–38. Springer, Wiesbaden (2022). https://doi.org/10.1007/978-3-658-36295-9_5

    Chapter  Google Scholar 

  23. Wilde, K., Anderson, L., Boyle, M., Pinder, A., Weir, A.: Introducing a new trusted research environment – the safe haven artificial platform (SHAIP). Int. J. Popul. Data Sci. 7(3) (2022)

    Google Scholar 

  24. Zimmerer, D., et al.: MOOD 2020: a public benchmark for out-of-distribution detection and localization on medical images. IEEE Trans. Med. Imaging 41(10), 2728–2738 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Kascenas .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 273 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kascenas, A. et al. (2024). Clinically Focussed Evaluation of Anomaly Detection and Localisation Methods Using Inpatient CT Head Data. In: Xue, Y., Chen, C., Chen, C., Zuo, L., Liu, Y. (eds) Data Augmentation, Labelling, and Imperfections. MICCAI 2023. Lecture Notes in Computer Science, vol 14379. Springer, Cham. https://doi.org/10.1007/978-3-031-58171-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58171-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58170-0

  • Online ISBN: 978-3-031-58171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics