Skip to main content

FResFormer: Leukemia Detection Using Fusion-Enabled CNN and Attention

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Abstract

In this paper, the binary classification of normal and abnormal (malignant) cells from the microscopic images is done. It is quite challenging due to the appearance of both cells morphologically similar. In particular, manual identification of malignant and benign cells from the microscopic images in early stages is difficult because of the similar resemblance of both cells in their appearance. This early diagnosis process requires advanced techniques like flow cytometry that are currently used and more expensive and, therefore, are not accessible in all places. Additionally, a medical expert is also required. Therefore, by using automated diagnostic tools, we can perform better diagnoses with low-cost microscopic image data. In this paper, we propose a classification of normal and malignant cells in the lymphocytes using a fusion-enabled CNN and Attention-based neural network, which we named Fusion-based Residual Transformer (FRESFORMER) architecture. Our proposed model tops the performance on the benchmark ISBI 2019 challenge dataset. The proposed model achieves an F1-Score of 84.89.

Supported by Ministry of Education, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647ā€“655. PMLR (2014)

    Google Scholar 

  2. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  3. Duggal, R., Gupta, A., Gupta, R.: Segmentation of overlapping/touching white blood cell nuclei using artificial neural networks. CME Series on Hemato-Oncopathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India (2016)

    Google Scholar 

  4. Duggal, R., Gupta, A., Gupta, R., Mallick, P.: SD-layer: stain deconvolutional layer for CNNs in medical microscopic imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 435ā€“443. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_50

    Chapter  Google Scholar 

  5. Duggal, R., Gupta, A., Gupta, R., Wadhwa, M., Ahuja, C.: Overlapping cell nuclei segmentation in microscopic images using deep belief networks. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1ā€“8 (2016)

    Google Scholar 

  6. Gehlot, S., Gupta, A., Gupta, R.: SDCT-AuxNet\(\theta \): DCT augmented stain deconvolutional CNN with auxiliary classifier for cancer diagnosis. Med. Image Anal. 61, 101661 (2020)

    Article  Google Scholar 

  7. Gupta, A., et al.: GCTI-SN: geometry-inspired chemical and tissue invariant stain normalization of microscopic medical images. Med. Image Anal. 65, 101788 (2020). https://doi.org/10.1016/j.media.2020.101788

  8. Gupta, R., Mallick, P., Duggal, R., Gupta, A., Sharma, O.: Stain color normalization and segmentation of plasma cells in microscopic images as a prelude to development of computer assisted automated disease diagnostic tool in multiple myeloma. Clin. Lymphoma Myeloma Leuk. 17(1), e99 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Kassani, S.H., kassani, P.H., Wesolowski, M.J., Schneider, K.A., Deters, R.: A hybrid deep learning architecture for leukemic b-lymphoblast classification (2019). https://doi.org/10.48550/ARXIV.1909.11866, https://arxiv.org/abs/1909.11866

  11. Khan, M.A., Choo, J.: Classification of cancer microscopic images via convolutional neural networks. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 141ā€“147. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_15

    Chapter  Google Scholar 

  12. Mohajerani, P., Ntziachristos, V.: Classification of normal versus malignant cells in B-ALL microscopic images based on a tiled convolution neural network approach. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 103ā€“111. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_11

    Chapter  Google Scholar 

  13. Mohapatra, S., Patra, D., Satpathy, S.: An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Comput. Appl. 24, 1887ā€“1904 (2014)

    Article  Google Scholar 

  14. Prellberg, J., Kramer, O.: Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks (2019). https://doi.org/10.48550/ARXIV.1906.09020, https://arxiv.org/abs/1906.09020

  15. Shah, S., Nawaz, W., Jalil, B., Khan, H.A.: Classification of normal and leukemic blast cells in B-ALL cancer using a combination of convolutional and recurrent neural networks. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 23ā€“31. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_3

    Chapter  Google Scholar 

  16. Shi, T., Wu, L., Zhong, C., Wang, R., Zheng, W.: Ensemble convolutional neural networks for cell classification in microscopic images. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 43ā€“51. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_5

    Chapter  Google Scholar 

  17. Singhal, V., Singh, P.: Texture features for the detection of acute lymphoblastic leukemia. In: Satapathy, S.C., Joshi, A., Modi, N., Pathak, N. (eds.) Proceedings of International Conference on ICT for Sustainable Development. AISC, vol. 409, pp. 535ā€“543. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0135-2_52

    Chapter  Google Scholar 

  18. Society, A.C.: Key statistics for acute lymphocytic leukemia (ALL). https://www.cancer.org/cancer/acute-lymphocytic-leukemia/about/key-statistics.html (2023). Accessed 17 Feb 2023

  19. Srinivas, M., Lin, Y.Y., Liao, H.Y.M.: Deep dictionary learning for fine-grained image classification. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 835ā€“839 (2017). https://doi.org/10.1109/ICIP.2017.8296398

  20. Srinivas, M., Naidu, R.R., Sastry, C., Mohan, C.K.: Content based medical image retrieval using dictionary learning. Neurocomputing 168, 880ā€“895 (2015). https://doi.org/10.1016/j.neucom.2015.05.036

  21. Verma, E., Singh, V.: ISBI challenge 2019: convolution neural networks for B-ALL cell classification. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 131ā€“139. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_14

    Chapter  Google Scholar 

  22. Yu, W., et al.: Automatic classification of leukocytes using deep neural network. In: 2017 IEEE 12th International Conference on ASIC (ASICON), pp. 1041ā€“1044. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murukessan Perumal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perumal, M., Goutham, E., Shivani Sri Varshini, U., Srinivas, M., Subramanyam, R.B.V. (2024). FResFormer: Leukemia Detection Using Fusion-Enabled CNN and Attention. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2010. Springer, Cham. https://doi.org/10.1007/978-3-031-58174-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58174-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58173-1

  • Online ISBN: 978-3-031-58174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics