Abstract
In this paper, the binary classification of normal and abnormal (malignant) cells from the microscopic images is done. It is quite challenging due to the appearance of both cells morphologically similar. In particular, manual identification of malignant and benign cells from the microscopic images in early stages is difficult because of the similar resemblance of both cells in their appearance. This early diagnosis process requires advanced techniques like flow cytometry that are currently used and more expensive and, therefore, are not accessible in all places. Additionally, a medical expert is also required. Therefore, by using automated diagnostic tools, we can perform better diagnoses with low-cost microscopic image data. In this paper, we propose a classification of normal and malignant cells in the lymphocytes using a fusion-enabled CNN and Attention-based neural network, which we named Fusion-based Residual Transformer (FRESFORMER) architecture. Our proposed model tops the performance on the benchmark ISBI 2019 challenge dataset. The proposed model achieves an F1-Score of 84.89.
Supported by Ministry of Education, India.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647ā655. PMLR (2014)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Duggal, R., Gupta, A., Gupta, R.: Segmentation of overlapping/touching white blood cell nuclei using artificial neural networks. CME Series on Hemato-Oncopathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India (2016)
Duggal, R., Gupta, A., Gupta, R., Mallick, P.: SD-layer: stain deconvolutional layer for CNNs in medical microscopic imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 435ā443. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_50
Duggal, R., Gupta, A., Gupta, R., Wadhwa, M., Ahuja, C.: Overlapping cell nuclei segmentation in microscopic images using deep belief networks. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1ā8 (2016)
Gehlot, S., Gupta, A., Gupta, R.: SDCT-AuxNet\(\theta \): DCT augmented stain deconvolutional CNN with auxiliary classifier for cancer diagnosis. Med. Image Anal. 61, 101661 (2020)
Gupta, A., et al.: GCTI-SN: geometry-inspired chemical and tissue invariant stain normalization of microscopic medical images. Med. Image Anal. 65, 101788 (2020). https://doi.org/10.1016/j.media.2020.101788
Gupta, R., Mallick, P., Duggal, R., Gupta, A., Sharma, O.: Stain color normalization and segmentation of plasma cells in microscopic images as a prelude to development of computer assisted automated disease diagnostic tool in multiple myeloma. Clin. Lymphoma Myeloma Leuk. 17(1), e99 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Kassani, S.H., kassani, P.H., Wesolowski, M.J., Schneider, K.A., Deters, R.: A hybrid deep learning architecture for leukemic b-lymphoblast classification (2019). https://doi.org/10.48550/ARXIV.1909.11866, https://arxiv.org/abs/1909.11866
Khan, M.A., Choo, J.: Classification of cancer microscopic images via convolutional neural networks. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 141ā147. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_15
Mohajerani, P., Ntziachristos, V.: Classification of normal versus malignant cells in B-ALL microscopic images based on a tiled convolution neural network approach. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 103ā111. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_11
Mohapatra, S., Patra, D., Satpathy, S.: An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Comput. Appl. 24, 1887ā1904 (2014)
Prellberg, J., Kramer, O.: Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks (2019). https://doi.org/10.48550/ARXIV.1906.09020, https://arxiv.org/abs/1906.09020
Shah, S., Nawaz, W., Jalil, B., Khan, H.A.: Classification of normal and leukemic blast cells in B-ALL cancer using a combination of convolutional and recurrent neural networks. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 23ā31. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_3
Shi, T., Wu, L., Zhong, C., Wang, R., Zheng, W.: Ensemble convolutional neural networks for cell classification in microscopic images. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 43ā51. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_5
Singhal, V., Singh, P.: Texture features for the detection of acute lymphoblastic leukemia. In: Satapathy, S.C., Joshi, A., Modi, N., Pathak, N. (eds.) Proceedings of International Conference on ICT for Sustainable Development. AISC, vol. 409, pp. 535ā543. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0135-2_52
Society, A.C.: Key statistics for acute lymphocytic leukemia (ALL). https://www.cancer.org/cancer/acute-lymphocytic-leukemia/about/key-statistics.html (2023). Accessed 17 Feb 2023
Srinivas, M., Lin, Y.Y., Liao, H.Y.M.: Deep dictionary learning for fine-grained image classification. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 835ā839 (2017). https://doi.org/10.1109/ICIP.2017.8296398
Srinivas, M., Naidu, R.R., Sastry, C., Mohan, C.K.: Content based medical image retrieval using dictionary learning. Neurocomputing 168, 880ā895 (2015). https://doi.org/10.1016/j.neucom.2015.05.036
Verma, E., Singh, V.: ISBI challenge 2019: convolution neural networks for B-ALL cell classification. In: Gupta, A., Gupta, R. (eds.) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. LNB, pp. 131ā139. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0798-4_14
Yu, W., et al.: Automatic classification of leukocytes using deep neural network. In: 2017 IEEE 12th International Conference on ASIC (ASICON), pp. 1041ā1044. IEEE (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Perumal, M., Goutham, E., Shivani Sri Varshini, U., Srinivas, M., Subramanyam, R.B.V. (2024). FResFormer: Leukemia Detection Using Fusion-Enabled CNN and Attention. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2010. Springer, Cham. https://doi.org/10.1007/978-3-031-58174-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-58174-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58173-1
Online ISBN: 978-3-031-58174-8
eBook Packages: Computer ScienceComputer Science (R0)