Skip to main content

Image Dehazing Based on Online Distillation

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Abstract

Advanced supervised single-image dehazing models require a large number of trainable parameters and a huge amount of training data, containing a paired set of hazy images and corresponding clear images. To address this, knowledge distillation paves the way for training a small student network with the help of a larger teacher network. We propose an online distillation network for image dehazing in which, the teacher is an autoencoder network with feature attention blocks, and the student is a smaller autoencoder with fewer feature attention blocks. Specifically, the proposed model trains both the heavy Teacher network and the compact student network at the same time, with the student network learning the weights of the intermediate layers from the teacher network. The results of the experiments conducted on both indoor and outdoor datasets, demonstrate a significant improvement in performance compared to the state-of-the-art models on the basis of both image quality and fewer model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borkar, K., Mukherjee, S.: Single image dehazing by approximating and eliminating the additional airlight component. Neurocomputing 400, 294ā€“308 (2020)

    Article  Google Scholar 

  2. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187ā€“5198 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chaitanya, B., Mukherjee, S.: Single image dehazing using improved cyclegan. J. Vis. Commun. Image Represent. 74, 103014 (2021)

    Google Scholar 

  4. Chen, Z., Wang, Y., Yang, Y., Liu, D.: PSD: principled synthetic-to-real dehazing guided by physical priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7180ā€“7189 (2021)

    Google Scholar 

  5. Dong, H., et al.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2157ā€“2167 (2020)

    Google Scholar 

  6. Fu, M.: A Discrete Wavelet Transform GAN for NonHomogeneous Dehazing. Ph.D. thesis (2021)

    Google Scholar 

  7. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vis. 129, 1789ā€“1819 (2021)

    Article  Google Scholar 

  8. Gui, J., et al.: A comprehensive survey and taxonomy on single image dehazing based on deep learning. ACM Comput. Surv. (2022). https://doi.org/10.1145/3576918

    Article  Google Scholar 

  9. Gui, J., et al.: A comprehensive survey on image dehazing based on deep learning. In: IJCAI, pp. 4426ā€“4433 (2021)

    Google Scholar 

  10. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341ā€“2353 (2010)

    Google Scholar 

  11. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network, vol. 2, no. 7. arXiv preprint arXiv:1503.02531 (2015)

  12. Hong, M., Xie, Y., Li, C., Qu, Y.: Distilling image dehazing with heterogeneous task imitation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3462ā€“3471 (2020)

    Google Scholar 

  13. Jaisurya, R.S., Mukherjee, S.: Attention-based single image dehazing using improved CycleGan. In: IJCNN (2022)

    Google Scholar 

  14. Jaisurya, R., Mukherjee, S.: AGLC-GAN: attention-based global-local cycle-consistent generative adversarial networks for unpaired single image dehazing. Image Vis. Comput. 140, 104859 (2023)

    Google Scholar 

  15. Lan, Y., et al.: OKDNet: online knowledge distillation network for single image dehazing (2022)

    Google Scholar 

  16. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770ā€“4778 (2017)

    Google Scholar 

  17. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492ā€“505 (2018)

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Ma, Y., Shi, Z., Chen, J.: GridDehazeNet: attention-based multi-scale network for image dehazing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7314ā€“7323 (2019)

    Google Scholar 

  19. Memon, S., Arain, R.H., Mallah, G.A.: AMSFF-Net: attention-based multi-stream feature fusion network for single image dehazing. J. Vis. Commun. Image Represent. 90(2023) (2023)

    Google Scholar 

  20. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908ā€“11915 (2020)

    Google Scholar 

  21. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154ā€“169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  22. Song, Y., He, Z., Qian, H., Du, X.: Vision transformers for single image dehazing. arXiv preprint arXiv:2204.03883 (2022)

  23. Wu, H., et al.: Contrastive learning for compact single image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10551ā€“10560 (2021)

    Google Scholar 

  24. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848ā€“6856 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasis Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaisurya, R.S., Mukherjee, S. (2024). Image Dehazing Based on Online Distillation. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2010. Springer, Cham. https://doi.org/10.1007/978-3-031-58174-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58174-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58173-1

  • Online ISBN: 978-3-031-58174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics