Skip to main content

WSD: Wild Selfie Dataset for Face Recognition in Selfie Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Abstract

With the rise of handy smart phones in the recent years, the trend of capturing selfie images is observed. Due to the different visual effects offered by the selfie apps, face recognition becomes more challenging with existing approaches. We develop a challenging Wild Selfie Dataset (WSD) where the images are captured from the selfie cameras of different smart phones. The WSD dataset contains 45,424 images from 42 individuals (i.e., 24 female and 18 male subjects), which are divided into 40,862 training and 4,562 test images. The average number of images per subject is 1,082 with minimum and maximum number of images for any subject are 518 and 2,634, respectively. The proposed dataset consists of several challenges, including but not limited to augmented reality filtering, mirrored images, occlusion, illumination, scale, expressions, view-point, aspect ratio, blur, partial faces, rotation, and alignment. We compare the proposed dataset with existing benchmark datasets in terms of different characteristics. The complexity of WSD dataset is also observed experimentally as compared to the existing face datasets. The dataset can be obtained from https://github.com/shivram1987/WildSelfieDataset.

All authors were affiliated to IIIT Sri City at the time of dataset creation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.crcv.ucf.edu/data/Selfie/.

  2. 2.

    https://selfiecity.net/.

  3. 3.

    FFmpeg Developers: http://ffmpeg.org/.

References

  1. Bansal, A., Nanduri, A., Castillo, C.D., Ranjan, R., Chellappa, R.: UMDFaces: an annotated face dataset for training deep networks. In: Proceedings of the IJCB, pp. 464ā€“473 (2017)

    Google Scholar 

  2. Bradski, G.: The OpenCV library. Dr. Dobbā€™s J. Softw. Tools (2000)

    Google Scholar 

  3. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: Proceedings of the FG, pp. 67ā€“74 (2018)

    Google Scholar 

  4. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87ā€“102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770ā€“778 (2016)

    Google Scholar 

  6. Hedman, P., Skepetzis, V., Hernandez-Diaz, K., Bigun, J., Alonso-Fernandez, F.: On the effect of selfie beautification filters on face detection and recognition. Pattern Recogn. Lett. 163, 104ā€“111 (2022)

    Article  Google Scholar 

  7. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on faces in ā€˜Real-Lifeā€™ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  8. Jain, V., Learned-Miller, E.: FDDB: a benchmark for face detection in unconstrained settings. Technical report, UMass Amherst Technical report (2010)

    Google Scholar 

  9. Kalayeh, M.M., Seifu, M., LaLanne, W., Shah, M.: How to take a good selfie? In: Proceedings of the ACMMM, pp. 923ā€“926 (2015)

    Google Scholar 

  10. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755ā€“1758 (2009)

    Google Scholar 

  11. Klare, B.F., et al.: Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus benchmark A. In: Proceedings of the CVPR, pp. 1931ā€“1939 (2015)

    Google Scholar 

  12. Li, C., Wang, R., Li, J., Fei, L.: Face detection based on YOLOv3. In: Recent Trends in Intelligent Computing, Communication and Devices, pp. 277ā€“284 (2020)

    Google Scholar 

  13. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the ICCV (2015)

    Google Scholar 

  14. Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: Proceedings of the International Conference on Biometrics, pp. 158ā€“165 (2018)

    Google Scholar 

  15. Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: Proceedings of the BMVC, vol. 1, p. 6 (2015)

    Google Scholar 

  16. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  17. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the CVPR, pp. 815ā€“823 (2015)

    Google Scholar 

  18. Shi, Y., Jain, A.K.: DocFace: matching id document photos to selfies. In: Proceedings of the International Conference on Biometrics Theory, Applications and Systems, pp. 1ā€“8 (2018)

    Google Scholar 

  19. Shi, Y., Jain, A.K.: DocFace+: ID document to selfie matching. IEEE Trans. Biometr. Behavior Identity Sci. 1(1), 56ā€“67 (2019)

    Article  Google Scholar 

  20. Srivastava, Y., Murali, V., Dubey, S.R.: A performance evaluation of loss functions for deep face recognition. In: Proceedings of the NCVPRIPG, pp. 322ā€“332 (2019)

    Google Scholar 

  21. Srivastava, Y., Murali, V., Dubey, S.R.: Hard-mining loss based convolutional neural network for face recognition. In: Proceedings of the CVIP, pp. 70ā€“80 (2020)

    Google Scholar 

  22. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the CVPR, pp. 1891ā€“1898 (2014)

    Google Scholar 

  23. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the CVPR, pp. 1701ā€“1708 (2014)

    Google Scholar 

  24. Tuli, S.H., Mao, A., Liu, W.: A novel face detector based on YOLOv3. In: Australasian Joint Conference on AI, pp. 55ā€“68 (2020)

    Google Scholar 

  25. Whitelam, C., et al.: IARPA Janus benchmark-b face dataset. In: Proceedings of the CVPR Workshops, pp. 90ā€“98 (2017)

    Google Scholar 

  26. William, I., Rachmawanto, E.H., Santoso, H.A., Sari, C.A., et al.: Face recognition using FaceNet (survey, performance test, and comparison). In: International Conference on Informatics and Computing (ICIC), pp. 1ā€“6 (2019)

    Google Scholar 

  27. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the CVPR, pp. 529ā€“534 (2011)

    Google Scholar 

  28. Xu, X., Du, M., Guo, H., Chang, J., Zhao, X.: Lightweight FaceNet based on MobileNet. Int. J. Intell. Sci. 11(1), 1ā€“16 (2020)

    Google Scholar 

  29. Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: Proceedings of the CVPR, pp. 5525ā€“5533 (2016)

    Google Scholar 

  30. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  31. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499ā€“1503 (2016)

    Article  Google Scholar 

  32. Zhang, L., Kakadiaris, I.A.: Local classifier chains for deep face recognition. In: Proceedings of the IJCB, pp. 158ā€“167 (2017)

    Google Scholar 

  33. Zhu, Z., et al.: WebFace260M: a benchmark unveiling the power of million-scale deep face recognition. In: Proceedings of the CVPR, pp. 10492ā€“10502 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasis Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumarapu, L., Dubey, S.R., Mukherjee, S., Mohan, P., Vinnakoti, S.P., Karthikeya, S. (2024). WSD: Wild Selfie Dataset for Face Recognition in Selfie Images. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2009. Springer, Cham. https://doi.org/10.1007/978-3-031-58181-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58181-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58180-9

  • Online ISBN: 978-3-031-58181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics