Abstract
With the rise of handy smart phones in the recent years, the trend of capturing selfie images is observed. Due to the different visual effects offered by the selfie apps, face recognition becomes more challenging with existing approaches. We develop a challenging Wild Selfie Dataset (WSD) where the images are captured from the selfie cameras of different smart phones. The WSD dataset contains 45,424 images from 42 individuals (i.e., 24 female and 18 male subjects), which are divided into 40,862 training and 4,562 test images. The average number of images per subject is 1,082 with minimum and maximum number of images for any subject are 518 and 2,634, respectively. The proposed dataset consists of several challenges, including but not limited to augmented reality filtering, mirrored images, occlusion, illumination, scale, expressions, view-point, aspect ratio, blur, partial faces, rotation, and alignment. We compare the proposed dataset with existing benchmark datasets in terms of different characteristics. The complexity of WSD dataset is also observed experimentally as compared to the existing face datasets. The dataset can be obtained from https://github.com/shivram1987/WildSelfieDataset.
All authors were affiliated to IIIT Sri City at the time of dataset creation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
FFmpeg Developers: http://ffmpeg.org/.
References
Bansal, A., Nanduri, A., Castillo, C.D., Ranjan, R., Chellappa, R.: UMDFaces: an annotated face dataset for training deep networks. In: Proceedings of the IJCB, pp. 464ā473 (2017)
Bradski, G.: The OpenCV library. Dr. Dobbās J. Softw. Tools (2000)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: Proceedings of the FG, pp. 67ā74 (2018)
Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87ā102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770ā778 (2016)
Hedman, P., Skepetzis, V., Hernandez-Diaz, K., Bigun, J., Alonso-Fernandez, F.: On the effect of selfie beautification filters on face detection and recognition. Pattern Recogn. Lett. 163, 104ā111 (2022)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on faces in āReal-Lifeā Images: Detection, Alignment, and Recognition (2008)
Jain, V., Learned-Miller, E.: FDDB: a benchmark for face detection in unconstrained settings. Technical report, UMass Amherst Technical report (2010)
Kalayeh, M.M., Seifu, M., LaLanne, W., Shah, M.: How to take a good selfie? In: Proceedings of the ACMMM, pp. 923ā926 (2015)
King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755ā1758 (2009)
Klare, B.F., et al.: Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus benchmark A. In: Proceedings of the CVPR, pp. 1931ā1939 (2015)
Li, C., Wang, R., Li, J., Fei, L.: Face detection based on YOLOv3. In: Recent Trends in Intelligent Computing, Communication and Devices, pp. 277ā284 (2020)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the ICCV (2015)
Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: Proceedings of the International Conference on Biometrics, pp. 158ā165 (2018)
Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: Proceedings of the BMVC, vol. 1, p. 6 (2015)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the CVPR, pp. 815ā823 (2015)
Shi, Y., Jain, A.K.: DocFace: matching id document photos to selfies. In: Proceedings of the International Conference on Biometrics Theory, Applications and Systems, pp. 1ā8 (2018)
Shi, Y., Jain, A.K.: DocFace+: ID document to selfie matching. IEEE Trans. Biometr. Behavior Identity Sci. 1(1), 56ā67 (2019)
Srivastava, Y., Murali, V., Dubey, S.R.: A performance evaluation of loss functions for deep face recognition. In: Proceedings of the NCVPRIPG, pp. 322ā332 (2019)
Srivastava, Y., Murali, V., Dubey, S.R.: Hard-mining loss based convolutional neural network for face recognition. In: Proceedings of the CVIP, pp. 70ā80 (2020)
Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the CVPR, pp. 1891ā1898 (2014)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the CVPR, pp. 1701ā1708 (2014)
Tuli, S.H., Mao, A., Liu, W.: A novel face detector based on YOLOv3. In: Australasian Joint Conference on AI, pp. 55ā68 (2020)
Whitelam, C., et al.: IARPA Janus benchmark-b face dataset. In: Proceedings of the CVPR Workshops, pp. 90ā98 (2017)
William, I., Rachmawanto, E.H., Santoso, H.A., Sari, C.A., et al.: Face recognition using FaceNet (survey, performance test, and comparison). In: International Conference on Informatics and Computing (ICIC), pp. 1ā6 (2019)
Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the CVPR, pp. 529ā534 (2011)
Xu, X., Du, M., Guo, H., Chang, J., Zhao, X.: Lightweight FaceNet based on MobileNet. Int. J. Intell. Sci. 11(1), 1ā16 (2020)
Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: Proceedings of the CVPR, pp. 5525ā5533 (2016)
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499ā1503 (2016)
Zhang, L., Kakadiaris, I.A.: Local classifier chains for deep face recognition. In: Proceedings of the IJCB, pp. 158ā167 (2017)
Zhu, Z., et al.: WebFace260M: a benchmark unveiling the power of million-scale deep face recognition. In: Proceedings of the CVPR, pp. 10492ā10502 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kumarapu, L., Dubey, S.R., Mukherjee, S., Mohan, P., Vinnakoti, S.P., Karthikeya, S. (2024). WSD: Wild Selfie Dataset for Face Recognition in Selfie Images. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2009. Springer, Cham. https://doi.org/10.1007/978-3-031-58181-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-58181-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58180-9
Online ISBN: 978-3-031-58181-6
eBook Packages: Computer ScienceComputer Science (R0)