Skip to main content

Improved Metric Space for Shape Correspondence

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2009))

Included in the following conference series:

  • 267 Accesses

Abstract

Shape correspondence is a fundamental task of finding a map among the elements of a pair of shapes. Particularly, non-rigid shapes add to the challenge of computing correspondences as they have their respective metric structures. In order to establish a mapping between non-rigid shapes, it is necessary to bring them into a common metric space. The idea is to identify shape forms that are invariant to isometric deformations and are embedded in a Euclidean space. These pose-invariant features are then aligned to identify point-to-point correspondences. Geodesic distances have been utilized to compute these shape-invariant forms. However, these distances are quite sensitive to topological noise present in the shape. This work proposes to overcome these challenges by utilizing shape-aware distances to identify invariant forms that are unaffected by topological variations of the shape and are smoother than geodesic distance. These distances along with the non-rigid alignment of shape forms in the Euclidean domain led to an improved point-to-point correspondence, enabling it to work effectively, even when dealing with different triangulations of the shape.

Supported by Visvesvaraya PhD Scheme, MeitY, Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alliez, P.: Recent advances in compression of 3D meshes. In: 2005 13th European Signal Processing Conference, pp. 1–4. IEEE (2005)

    Google Scholar 

  2. Shamir, A.: A survey on mesh segmentation techniques. In: Computer Graphics Forum, vol. 27, no. 6, pp. 1539–1556. Wiley Online Library (2008)

    Google Scholar 

  3. Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Computer Graphics Forum, vol. 30, no. 6, pp. 1681–1707. Wiley Online Library (2011)

    Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Rock, paper, and scissors: extrinsic vs. intrinsic similarity of non-rigid shapes. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–6. IEEE (2007)

    Google Scholar 

  5. Marin, R., Rakotosaona, M.-J., Melzi, S., Ovsjanikov, M.: Correspondence learning via linearly-invariant embedding. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1608–1620 (2020)

    Google Scholar 

  6. Abdelreheem, A., Eldesokey, A., Ovsjanikov, M., Wonka, P.: Zero-shot 3D shape correspondence. arXiv preprint arXiv:2306.03253 (2023)

  7. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on Geometry Processing, Vienna, Austria, vol. 2, no. 3, p. 5 (2005)

    Google Scholar 

  8. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3D mesh saliency with statistical descriptors. In: Computer Graphics Forum, vol. 27, no. 2, pp. 643–652. Wiley Online Library (2008)

    Google Scholar 

  9. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)

    Google Scholar 

  10. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 2001 Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE (2001)

    Google Scholar 

  11. Bellekens, B., Spruyt, V., Berkvens, R., Weyn, M.: A survey of rigid 3D pointcloud registration algorithms. In: AMBIENT 2014: The Fourth International Conference on Ambient Computing, Applications, Services and Technologies, Rome, Italy, 24–28 August 2014, pp. 8–13 (2014)

    Google Scholar 

  12. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  13. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, New York (2008). https://doi.org/10.1007/978-0-387-73301-2

    Book  Google Scholar 

  14. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 351–358 (1995)

    Google Scholar 

  15. Zhang, H., Van Kaick, O., Dyer, R.: Spectral mesh processing. In: Computer Graphics Forum, vol. 29, no. 6, pp. 1865–1894. Wiley Online Library (2010)

    Google Scholar 

  16. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 1–11 (2012)

    Article  Google Scholar 

  17. Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005). https://doi.org/10.1007/0-387-28981-X

    Book  Google Scholar 

  18. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95(15), 8431–8435 (1998)

    Article  MathSciNet  Google Scholar 

  19. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 1–11 (2013)

    Article  Google Scholar 

  20. Lipman, Y., Rustamov, R., Funkhouser, T.: Biharmonic distance. ACM Trans. Graph. 29(3), 1–11 (2010)

    Article  Google Scholar 

  21. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace-Beltrami operators for shape analysis and segmentation. Comput. Graph. 33(3), 381–390 (2009)

    Article  Google Scholar 

  22. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  23. Groenen, P., van de Velden, M.: Multidimensional scaling. Technical report (2004)

    Google Scholar 

  24. Jain, V., Zhang, H., Van Kaick, O.: Non-rigid spectral correspondence of triangle meshes. Int. J. Shape Model. 13(01), 101–124 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was financially supported by Visvesvaraya PhD Scheme, Ministry of Electronics and Information Technology, Government of India under Grant MEITY-PHD-1090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manika Bindal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bindal, M., Kamat, V. (2024). Improved Metric Space for Shape Correspondence. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2009. Springer, Cham. https://doi.org/10.1007/978-3-031-58181-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58181-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58180-9

  • Online ISBN: 978-3-031-58181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics