Abstract
In rank-metric cryptography, a vector from a finite dimensional linear space over a finite field is viewed as the linear space spanned by its entries. The rank decoding problem which is the analogue of the problem of decoding a random linear code consists in recovering a basis of a random noise vector that was used to perturb a set of random linear equations sharing a secret solution. Assuming the intractability of this problem, we introduce a new construction of injective one-way trapdoor functions. Our solution departs from the frequent way of building public key primitives from error-correcting codes where, to establish the security, ad hoc assumptions about a hidden structure are made. Our method produces a hard-to-distinguish linear code together with low weight vectors which constitute the secret that helps recover the inputs. The key idea is to focus on trapdoor functions that take sufficiently enough input vectors sharing the same support. Applying then the error correcting algorithm designed for Low Rank Parity Check (LRPC) codes, we obtain an inverting algorithm that recovers the inputs with overwhelming probability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilar Melchor, C., et al.: BIKE. Round 3 Submission to the NIST Post-Quantum Cryptography Call, v. 4.2, September 2021
Aguilar Melchor, C., et al.: Rank quasi cyclic (RQC). Second Round submission to NIST Post-Quantum Cryptography call, April 2020
Aguilar-Melchor, C., Aragon, N., Dyseryn, V., Gaborit, P., Zemor, G.: LRPC codes with multiple syndromes: near ideal-size KEMs without ideals. In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryptography. PQCrypto 2022. LNCS, vol. 13512, pp. 45–68. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17234-2_3
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC ’96 (1996)
Alekhnovich, M.: More on average case vs approximation complexity. In: 44th Symposium on Foundations of Computer Science (FOCS 2003), 11–14 October 2003, Cambridge, MA, USA, Proceedings, pp. 298–307. IEEE Computer Society (2003)
Aragon, N., et al.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call, March 2019
Aragon, N., et al.: LowMS: a new rank metric code-based kem without ideal structure. Cryptology ePrint Archive, Paper 2022/1596, 2022. https://eprint.iacr.org/2022/1596
Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity check codes: new decoding algorithms and applications to cryptography. IEEE Trans. Inform. Theory 65(12), 7697–7717 (2019)
Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: A new algorithm for solving the rank syndrome decoding problem. In: 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2421–2425. IEEE (2018)
Bardet, M., Briaud, P.: An algebraic approach to the rank support learning problem. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 442–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_23
Bardet, M., Briaud, P., Bros, M., Gaborit, P., Tillich, J.P.: Revisiting algebraic attacks on minrank and on the rank decoding problem, 2022
Bardet, M., Mora, R., Tillich, J.P.: Polynomial time attack on high rate random alternant codes. CoRR, abs/2304.14757 (2023)
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Dorothy, E., Denning, R.P., Ravi, G., Ravi, S.S., Victoria, A. (eds.) CCS ’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, 3–5 November 1993, pp. 62–73. ACM (1993)
Bidoux, L., Briaud, P., Bros, M., Gaborit, P.: RQC revisited and more cryptanalysis for rank-based cryptography. ArXiv, abs/2207.01410, 2022
Bombar, M., Couvreur, A.: Decoding supercodes of gabidulin codes and applications to cryptanalysis. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_1
Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10
Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.-P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014)
Couvreur, A., Gaborit, P., Gauthier-Umana, V., Otmani, A., Tillich, J.P.: Distinguisher-Based Attacks on Public-Key Cryptosystems Using Reed-Solomon Codes. In: International Workshop on Coding and Cryptography - WCC 2013, pp. 181–193, Bergen, Norway, April 2013
Couvreur, A., Mora, R., Tillich, J.P.: A new approach based on quadratic forms to attack the mceliece cryptosystem. CoRR, abs/2306.10294, 2023
Couvreur, A., Otmani, A., Tillich, J.-P.: New identities relating wild Goppa codes. Finite Fields Appl. 29, 178–197 (2014)
Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece over quadratic extensions. IEEE Trans. Inform. Theory 63(1), 404–427 (2017)
Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes: ranksign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_3
Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_21
Faugere, J.C., Gauthier-Umana, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. In: Proceedings of the IEEE Information Theory Workshop- ITW 2011, pp. 282–286, Paraty, Brasil, October 2011
Faugère, J.-C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher for high rate McEliece cryptosystems. IEEE Trans. Inform. Theory 59(10), 6830–6844 (2013)
Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of reconstructing p-polynomials. In: Coding and Cryptography, International Workshop, WCC 2005, Bergen, Norway, 14–18 March 2005. Revised Selected Papers, pp. 304–315 (2005)
Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as syndrome decoding. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_22
Gabidulin, E.M., Rashwan, H., Honary, B.: On improving security of GPT cryptosystems. In: Proceedings of the IEEE International Symposium on Information Theory - ISIT, pp. 1110–1114. IEEE (2009)
Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985)
Gabidulin, E.M.: Attacks and counter-attacks on the GPT public key cryptosystem. Des. Codes Cryptogr. 48(2), 171–177 (2008)
Gabidulin, E.M., Ourivski, A.V.: Modified GPT PKC with right scrambler. Electron. Notes Discret. Math. 6, 168–177 (2001)
Gabidulin, E.M., Ourivski, A.V., Honary, B., Ammar, B.: Reducible rank codes and their applications to cryptography. IEEE Trans. Inform. Theory 49(12), 3289–3293 (2003)
Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their applications to cryptography. In: Advances in Cryptology - EUROCRYPT’91, number 547 in LNCS, pp. 482–489, Brighton, April 1991
Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_7
Gaborit, P., Hauteville, A., Tillich, J.-P.: RankSynd a PRNG based on rank metric. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 18–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_2
Gaborit, P., Otmani, A., Talé-Kalachi, H.: Polynomial-time key recovery attack on the Faure-Loidreau scheme based on Gabidulin codes. Des. Codes Cryptogr. 86(7), 1391–1403 (2018)
Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inform. Theory 62(2), 1006–1019 (2016)
Philippe, G., Gilles, Z.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE IT, 2016
Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_13
Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homomorphic encryption scheme relying on Reed-Solomon codes. CoRR, abs/1203.6686, 2012
Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant of McEliece’s cryptosystem based on Reed-Solomon codes. CoRR, abs/1204.6459, 2012
Gibson, K.: Severely denting the Gabidulin version of the McEliece public key cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)
Gibson, K.: The security of the gabidulin public key cryptosystem. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_19
Goldreich, O.: The Foundations of Cryptography - volume 1, Basic Techniques. Cambridge University Press, Cambridge (2001)
Oded, G., Leonid, A.L.: A hard-core predicate for all one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 25–32. ACM (1989)
Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Hohenberger, S., Koppula, V., Waters, B.: Chosen ciphertext security from injective trapdoor functions. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 836–866. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_28
Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. In: 30th Annual Symposium on Foundations of Computer Science, North Carolina, USA, 30 October–1 November 1989, pp. 236–241. IEEE Computer Society (1989)
Lavauzelle, J., Loidreau, P., Pham, B.D.: RAMESSES, a Rank Metric Encryption Scheme with Short Keys. working paper or preprint, January 2020
Pierre, L.: Properties of codes in rank metric, 2006
Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_1
Robert, J.M.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44
Mora, R., Tillich, J.-P.: On the dimension and structure of the square of the dual of a goppa code. Des. Codes Cryptogr. 91(4), 1351–1372 (2023)
Otmani, A., Kalachi, H.T.: Square code attack on a modified sidelnikov cryptosystem. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 173–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18681-8_14
Otmani, A., Talé-Kalachi, H., Ndjeya, S.: Improved cryptanalysis of rank metric schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018)
Overbeck, R.: Extending Gibson’s attacks on the GPT cryptosystem. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 178–188. Springer, Heidelberg (2006). https://doi.org/10.1007/11779360_15
Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_5
Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2008)
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork, C., (ed.), Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 187–196. ACM (2008)
Rashwan, H., Gabidulin, E.M., Honary, B.: A smart approach for GPT cryptosystem based on rank code. In: Proceedings of the IEEE International Symposium on Information Theory - ISIT, pp. 2463–2467. IEEE (2010)
Rashwan, H., Gabidulin, E., Honary, B.: Security of the GPT cryptosystem and its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge University Press, USA (2008)
Wachter-Zeh, A., Puchinger, S., Renner, J. : Repairing the Faure-Loidreau public-key cryptosystem. In: Proceedings of the IEEE International Symposium on Information Theory - ISIT, pp. 2426–2430 (2018)
Wang, L.-P.: Loong: a new IND-CCA-secure code-based KEM. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 2584–2588 (2019)
Burle, É., Otmani, A.: An upper-bound on the decoding failure probability of the LRPC decoder. In: Quaglia, E.A. (eds.) Cryptography and Coding. IMACC 2023. LNCS, vol. 14421, pp. 3–16. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-47818-5_1
Acknowledgments
We are grateful to M. Bardet for providing computer programs that helped us compute complexities of the best existing attacks. E. Burle is supported by RIN100 program funded by Région Normandie. Y. Hatri is supported by RIN Label d’Excellence MINMACS funded by Région Normandie. P. Gaborit and A. Otmani are supported by the grant ANR-22-PETQ-0008 PQ-TLS funded by Agence Nationale de la Recherche within France 2030 program. A Otmani is supported by FAVPQC (EIG CONCERT-Japan & CNRS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Auxiliary Result
Lemma 1
Let us assume that \(w + 3 \leqslant \min \{L , m \}\). Then we have
Proof
Using the expression of the cardinality of \(\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )\) from (1) we therefore have
Exploiting the fact that for every \(x \in [0,1/2]\), \(e^{-2x} \leqslant 1 -x \leqslant e^{-x}\) we can write that
Let us set \(\gamma \triangleq q/(q-1)\). This means that \(q^{w-1} \leqslant \frac{q^w-1}{q-1} \leqslant \gamma q^{w-1}\) which entails that
But the conditions \(w + 3 \leqslant L\) and \(q \geqslant 2\) enable us to write that \(2\gamma q^{-L+w -1 } \leqslant 2 \gamma q^{-4} \leqslant \frac{1}{2q}\). By the same arguments we also have \(2\gamma q^{-m+w -1 } \leqslant \frac{1}{2q}\). This implies that
We have hence proved that \( \left|{\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )} \right| \geqslant q^{(L+m - w )w}\). Next, by similar techniques, we can show that
which concludes the proof of the lemma. \(\square \)
B Upper-Bound on the Decoding Failure Probability
We now turn to the question of proving Theorem 2 by bounding the probability \({{\,\mathrm{\mathbb {P}}\,}}\Big \{{{\,\mathrm{\Phi }\,}}({\textbf{H}}, {\textbf{H}}{\textbf{E}}) \ne {\textbf{E}}\Big \}\) that \({{\,\mathrm{\Phi }\,}}\) fails on a random input \(({\textbf{H}},{\textbf{H}}{\textbf{E}})\). For that purpose we define by \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) and \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\) the probability that \({{\,\mathrm{\Phi }\,}}\) fails at the first and second step respectively. We then clearly have \({{\,\mathrm{\mathbb {P}}\,}}\Big \{{{\,\mathrm{\Phi }\,}}({\textbf{H}}, {\textbf{H}}{\textbf{E}}) \ne {\textbf{E}}\Big \} = {{\,\mathrm{\mathbb {P}}\,}}_\textrm{I} + (1- {{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}) {{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\) which implies that \( {{\,\mathrm{\mathbb {P}}\,}}\Big \{{{\,\mathrm{\Phi }\,}}({\textbf{H}}, {\textbf{H}}{\textbf{E}}) \ne {\textbf{E}}\Big \} \leqslant {{\,\mathrm{\mathbb {P}}\,}}_\textrm{I} + {{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}. \) We have seen in Sect. 4 that the decoding algorithm \({{\,\mathrm{\Phi }\,}}\) fail during the first step if one of the following two events occur: either \(\langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}}\) is not equal to \(\mathcal {E} \cdot \mathcal {W}_r\) for every \(r \in \left\{ 1,\dots ,\ell \right\} \), or each time we have the equality \(\langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} = \mathcal {E} \cdot \mathcal {W}_r\), the strict inclusion \(\mathcal {E} \; \subsetneq \; \bigcap _{i=1}^w \left( f^{(r)}_i\right) ^{-1} \cdot \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}}\) holds. As by assumption the rows of \({\textbf{H}}\) are drawn independently, we see that \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) is at most
The last failure case is although \(\langle {{\textbf{E}}} {\rangle }_{{\mathbb {F}_q}}\) has been correctly computed, it cannot compute the entries of \({\textbf{E}}\) because for at least one r in \(\left\{ 1,\dots ,\ell \right\} \), the dimension of \(\mathcal {E} \cdot \mathcal {W}_r\) is not equal to tw. We see that we have
The rest of this section is devoted to proving bounds for \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) and \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\), mainly using results from LRPC decoding described in [67].
In order to bound \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) we bound \({{\,\mathrm{\mathbb {P}}\,}}\Big \{ \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} \ne \mathcal {E} \cdot \mathcal {W}_r \Big \}\) with Proposition 5 and \({{\,\mathrm{\mathbb {P}}\,}}\left\{ \mathcal {E} \ne \bigcap _{i=1}^w \left( f^{(r)}_{i}\right) ^{-1} \cdot \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}}\;\; \Big \vert \;\; \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} = \mathcal {E} \cdot \mathcal {W}_r \right\} \) in Theorem 4, and with (4) we get the result.
Proposition 5
(Proposition 3 in [67]). Assume that \(N \geqslant tw\). For a random homogeneous matrix \({\textbf{E}}\xleftarrow {\$}\mathcal {E}^{n \times N}\) and a random vector \({\textbf{h}}\xleftarrow {\$}\mathcal {W}^n\) where \(\mathcal {E} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{t}(q,m)\) and \(\mathcal {W} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{w}(q,m)\), the probability that \(\langle {{\textbf{h}}{\textbf{E}}} {\rangle }_{{\mathbb {F}_q}}\) is different from \(\mathcal {E} \cdot \mathcal {W}\) is at most
Theorem 4
(Theorem 2 in [67]). Let \(\mathcal {U} \triangleq \mathcal {E} \cdot \mathcal {W}\) where \(\mathcal {W} \in \boldsymbol{\textrm{Gr}}_{w}(q,m)\) and \(\mathcal {E} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{t}(q,m)\) with \((2w-1)t < m\). Then for an arbitrary basis \(f_1,\dots {},f_w\) of \(\mathcal {W}\), we have
For \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\), we bound \({{\,\mathrm{\mathbb {P}}\,}}\Big \{\dim \; \mathcal {E} \cdot \mathcal {W}_r = tw \Big \}\) in Proposition 6 and use (5).
Proposition 6
(Proposition 4 in [67]). For \(\mathcal {W} \in \boldsymbol{\textrm{Gr}}_{w}(q,m)\) and assuming that \(wt < m\), we have
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Burle, É., Gaborit, P., Hatri, Y., Otmani, A. (2024). Injective Rank Metric Trapdoor Functions with Homogeneous Errors. In: Smith, B., Wu, H. (eds) Selected Areas in Cryptography. SAC 2022. Lecture Notes in Computer Science, vol 13742. Springer, Cham. https://doi.org/10.1007/978-3-031-58411-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-58411-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58410-7
Online ISBN: 978-3-031-58411-4
eBook Packages: Computer ScienceComputer Science (R0)