Skip to main content

Injective Rank Metric Trapdoor Functions with Homogeneous Errors

  • Conference paper
  • First Online:
Selected Areas in Cryptography (SAC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13742))

Included in the following conference series:

  • 161 Accesses

Abstract

In rank-metric cryptography, a vector from a finite dimensional linear space over a finite field is viewed as the linear space spanned by its entries. The rank decoding problem which is the analogue of the problem of decoding a random linear code consists in recovering a basis of a random noise vector that was used to perturb a set of random linear equations sharing a secret solution. Assuming the intractability of this problem, we introduce a new construction of injective one-way trapdoor functions. Our solution departs from the frequent way of building public key primitives from error-correcting codes where, to establish the security, ad hoc assumptions about a hidden structure are made. Our method produces a hard-to-distinguish linear code together with low weight vectors which constitute the secret that helps recover the inputs. The key idea is to focus on trapdoor functions that take sufficiently enough input vectors sharing the same support. Applying then the error correcting algorithm designed for Low Rank Parity Check (LRPC) codes, we obtain an inverting algorithm that recovers the inputs with overwhelming probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See [8, 26, 28, 30, 50, 52, 61, 62, 65].

References

  1. Aguilar Melchor, C., et al.: BIKE. Round 3 Submission to the NIST Post-Quantum Cryptography Call, v. 4.2, September 2021

    Google Scholar 

  2. Aguilar Melchor, C., et al.: Rank quasi cyclic (RQC). Second Round submission to NIST Post-Quantum Cryptography call, April 2020

    Google Scholar 

  3. Aguilar-Melchor, C., Aragon, N., Dyseryn, V., Gaborit, P., Zemor, G.: LRPC codes with multiple syndromes: near ideal-size KEMs without ideals. In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryptography. PQCrypto 2022. LNCS, vol. 13512, pp. 45–68. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17234-2_3

  4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC ’96 (1996)

    Google Scholar 

  5. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th Symposium on Foundations of Computer Science (FOCS 2003), 11–14 October 2003, Cambridge, MA, USA, Proceedings, pp. 298–307. IEEE Computer Society (2003)

    Google Scholar 

  6. Aragon, N., et al.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call, March 2019

    Google Scholar 

  7. Aragon, N., et al.: LowMS: a new rank metric code-based kem without ideal structure. Cryptology ePrint Archive, Paper 2022/1596, 2022. https://eprint.iacr.org/2022/1596

  8. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity check codes: new decoding algorithms and applications to cryptography. IEEE Trans. Inform. Theory 65(12), 7697–7717 (2019)

    Article  MathSciNet  Google Scholar 

  9. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: A new algorithm for solving the rank syndrome decoding problem. In: 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2421–2425. IEEE (2018)

    Google Scholar 

  10. Bardet, M., Briaud, P.: An algebraic approach to the rank support learning problem. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 442–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_23

    Chapter  Google Scholar 

  11. Bardet, M., Briaud, P., Bros, M., Gaborit, P., Tillich, J.P.: Revisiting algebraic attacks on minrank and on the rank decoding problem, 2022

    Google Scholar 

  12. Bardet, M., Mora, R., Tillich, J.P.: Polynomial time attack on high rate random alternant codes. CoRR, abs/2304.14757 (2023)

    Google Scholar 

  13. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Dorothy, E., Denning, R.P., Ravi, G., Ravi, S.S., Victoria, A. (eds.) CCS ’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, 3–5 November 1993, pp. 62–73. ACM (1993)

    Google Scholar 

  14. Bidoux, L., Briaud, P., Bros, M., Gaborit, P.: RQC revisited and more cryptanalysis for rank-based cryptography. ArXiv, abs/2207.01410, 2022

    Google Scholar 

  15. Bombar, M., Couvreur, A.: Decoding supercodes of gabidulin codes and applications to cryptanalysis. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_1

    Chapter  Google Scholar 

  16. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10

    Chapter  Google Scholar 

  17. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.-P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014)

    Article  MathSciNet  Google Scholar 

  18. Couvreur, A., Gaborit, P., Gauthier-Umana, V., Otmani, A., Tillich, J.P.: Distinguisher-Based Attacks on Public-Key Cryptosystems Using Reed-Solomon Codes. In: International Workshop on Coding and Cryptography - WCC 2013, pp. 181–193, Bergen, Norway, April 2013

    Google Scholar 

  19. Couvreur, A., Mora, R., Tillich, J.P.: A new approach based on quadratic forms to attack the mceliece cryptosystem. CoRR, abs/2306.10294, 2023

    Google Scholar 

  20. Couvreur, A., Otmani, A., Tillich, J.-P.: New identities relating wild Goppa codes. Finite Fields Appl. 29, 178–197 (2014)

    Article  MathSciNet  Google Scholar 

  21. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece over quadratic extensions. IEEE Trans. Inform. Theory 63(1), 404–427 (2017)

    Google Scholar 

  22. Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes: ranksign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_3

    Chapter  Google Scholar 

  23. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_21

    Chapter  Google Scholar 

  24. Faugere, J.C., Gauthier-Umana, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. In: Proceedings of the IEEE Information Theory Workshop- ITW 2011, pp. 282–286, Paraty, Brasil, October 2011

    Google Scholar 

  25. Faugère, J.-C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher for high rate McEliece cryptosystems. IEEE Trans. Inform. Theory 59(10), 6830–6844 (2013)

    Article  MathSciNet  Google Scholar 

  26. Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of reconstructing p-polynomials. In: Coding and Cryptography, International Workshop, WCC 2005, Bergen, Norway, 14–18 March 2005. Revised Selected Papers, pp. 304–315 (2005)

    Google Scholar 

  27. Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as syndrome decoding. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_22

    Chapter  Google Scholar 

  28. Gabidulin, E.M., Rashwan, H., Honary, B.: On improving security of GPT cryptosystems. In: Proceedings of the IEEE International Symposium on Information Theory - ISIT, pp. 1110–1114. IEEE (2009)

    Google Scholar 

  29. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985)

    MathSciNet  Google Scholar 

  30. Gabidulin, E.M.: Attacks and counter-attacks on the GPT public key cryptosystem. Des. Codes Cryptogr. 48(2), 171–177 (2008)

    Article  MathSciNet  Google Scholar 

  31. Gabidulin, E.M., Ourivski, A.V.: Modified GPT PKC with right scrambler. Electron. Notes Discret. Math. 6, 168–177 (2001)

    Article  MathSciNet  Google Scholar 

  32. Gabidulin, E.M., Ourivski, A.V., Honary, B., Ammar, B.: Reducible rank codes and their applications to cryptography. IEEE Trans. Inform. Theory 49(12), 3289–3293 (2003)

    Article  MathSciNet  Google Scholar 

  33. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their applications to cryptography. In: Advances in Cryptology - EUROCRYPT’91, number 547 in LNCS, pp. 482–489, Brighton, April 1991

    Google Scholar 

  34. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_7

    Chapter  Google Scholar 

  35. Gaborit, P., Hauteville, A., Tillich, J.-P.: RankSynd a PRNG based on rank metric. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 18–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_2

    Chapter  Google Scholar 

  36. Gaborit, P., Otmani, A., Talé-Kalachi, H.: Polynomial-time key recovery attack on the Faure-Loidreau scheme based on Gabidulin codes. Des. Codes Cryptogr. 86(7), 1391–1403 (2018)

    Article  MathSciNet  Google Scholar 

  37. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inform. Theory 62(2), 1006–1019 (2016)

    Article  MathSciNet  Google Scholar 

  38. Philippe, G., Gilles, Z.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE IT, 2016

    Google Scholar 

  39. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_13

    Chapter  Google Scholar 

  40. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homomorphic encryption scheme relying on Reed-Solomon codes. CoRR, abs/1203.6686, 2012

    Google Scholar 

  41. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant of McEliece’s cryptosystem based on Reed-Solomon codes. CoRR, abs/1204.6459, 2012

    Google Scholar 

  42. Gibson, K.: Severely denting the Gabidulin version of the McEliece public key cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)

    Article  MathSciNet  Google Scholar 

  43. Gibson, K.: The security of the gabidulin public key cryptosystem. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_19

    Chapter  Google Scholar 

  44. Goldreich, O.: The Foundations of Cryptography - volume 1, Basic Techniques. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  45. Oded, G., Leonid, A.L.: A hard-core predicate for all one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 25–32. ACM (1989)

    Google Scholar 

  46. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Google Scholar 

  47. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  Google Scholar 

  48. Hohenberger, S., Koppula, V., Waters, B.: Chosen ciphertext security from injective trapdoor functions. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 836–866. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_28

    Chapter  Google Scholar 

  49. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. In: 30th Annual Symposium on Foundations of Computer Science, North Carolina, USA, 30 October–1 November 1989, pp. 236–241. IEEE Computer Society (1989)

    Google Scholar 

  50. Lavauzelle, J., Loidreau, P., Pham, B.D.: RAMESSES, a Rank Metric Encryption Scheme with Short Keys. working paper or preprint, January 2020

    Google Scholar 

  51. Pierre, L.: Properties of codes in rank metric, 2006

    Google Scholar 

  52. Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_1

    Chapter  Google Scholar 

  53. Robert, J.M.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44

    Google Scholar 

  54. Mora, R., Tillich, J.-P.: On the dimension and structure of the square of the dual of a goppa code. Des. Codes Cryptogr. 91(4), 1351–1372 (2023)

    Article  MathSciNet  Google Scholar 

  55. Otmani, A., Kalachi, H.T.: Square code attack on a modified sidelnikov cryptosystem. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 173–183. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18681-8_14

    Chapter  Google Scholar 

  56. Otmani, A., Talé-Kalachi, H., Ndjeya, S.: Improved cryptanalysis of rank metric schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018)

    Article  MathSciNet  Google Scholar 

  57. Overbeck, R.: Extending Gibson’s attacks on the GPT cryptosystem. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 178–188. Springer, Heidelberg (2006). https://doi.org/10.1007/11779360_15

    Chapter  Google Scholar 

  58. Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_5

    Chapter  Google Scholar 

  59. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2008)

    Article  MathSciNet  Google Scholar 

  60. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork, C., (ed.), Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 187–196. ACM (2008)

    Google Scholar 

  61. Rashwan, H., Gabidulin, E.M., Honary, B.: A smart approach for GPT cryptosystem based on rank code. In: Proceedings of the IEEE International Symposium on Information Theory - ISIT, pp. 2463–2467. IEEE (2010)

    Google Scholar 

  62. Rashwan, H., Gabidulin, E., Honary, B.: Security of the GPT cryptosystem and its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)

    Article  Google Scholar 

  63. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  64. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge University Press, USA (2008)

    Book  Google Scholar 

  65. Wachter-Zeh, A., Puchinger, S., Renner, J. : Repairing the Faure-Loidreau public-key cryptosystem. In: Proceedings of the IEEE International Symposium on Information Theory - ISIT, pp. 2426–2430 (2018)

    Google Scholar 

  66. Wang, L.-P.: Loong: a new IND-CCA-secure code-based KEM. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 2584–2588 (2019)

    Google Scholar 

  67. Burle, É., Otmani, A.: An upper-bound on the decoding failure probability of the LRPC decoder. In: Quaglia, E.A. (eds.) Cryptography and Coding. IMACC 2023. LNCS, vol. 14421, pp. 3–16. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-47818-5_1

Download references

Acknowledgments

We are grateful to M. Bardet for providing computer programs that helped us compute complexities of the best existing attacks. E. Burle is supported by RIN100 program funded by Région Normandie. Y. Hatri is supported by RIN Label d’Excellence MINMACS funded by Région Normandie. P. Gaborit and A. Otmani are supported by the grant ANR-22-PETQ-0008 PQ-TLS funded by Agence Nationale de la Recherche within France 2030 program. A Otmani is supported by FAVPQC (EIG CONCERT-Japan & CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Otmani .

Editor information

Editors and Affiliations

Appendices

A Auxiliary Result

Lemma 1

Let us assume that \(w + 3 \leqslant \min \{L , m \}\). Then we have

$$\begin{aligned} q^{(L+m)w - w^2} \;\leqslant \;\left|{\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )} \right| \;\leqslant \; e^{2/(q-1)} \; q^{(L+m)w - w^2} \end{aligned}$$

Proof

Using the expression of the cardinality of \(\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )\) from (1) we therefore have

$$\begin{aligned} \left|{\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )} \right| = \prod _{i=0}^{w-1} \left( q^{L} - q^i \right) \frac{q^{m} - q^i}{q^{w} - q^i} & = q^{(L+m-w)w} \prod _{i=0}^{w-1} \left( 1 - q^{i-L} \right) \prod _{i=0}^{w-1} \frac{1 - q^{i-m}}{1 - q^{i-w}} \end{aligned}$$

Exploiting the fact that for every \(x \in [0,1/2]\), \(e^{-2x} \leqslant 1 -x \leqslant e^{-x}\) we can write that

$$\begin{aligned} \left|{\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )} \right| &\geqslant q^{(L+m-w)w} \prod _{i=0}^{w-1}e^{-2q^{i-L}} \; \prod _{i=0}^{w-1} \frac{e^{-2q^{i-m}}}{e^{-q^{i-w}}}\\ &\geqslant q^{(L+m-w)w} e^{\left( -2q^{-L} - 2 q^{-m} + q^{-w} \right) \frac{q^w-1}{q-1}} \end{aligned}$$

Let us set \(\gamma \triangleq q/(q-1)\). This means that \(q^{w-1} \leqslant \frac{q^w-1}{q-1} \leqslant \gamma q^{w-1}\) which entails that

$$\begin{aligned} \left|{\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )} \right| &\geqslant q^{(L+m-w)w} \; e^{-2\gamma q^{-L+w -1 } - 2 \gamma q^{-m+w-1} + q^{-1}} \end{aligned}$$

But the conditions \(w + 3 \leqslant L\) and \(q \geqslant 2\) enable us to write that \(2\gamma q^{-L+w -1 } \leqslant 2 \gamma q^{-4} \leqslant \frac{1}{2q}\). By the same arguments we also have \(2\gamma q^{-m+w -1 } \leqslant \frac{1}{2q}\). This implies that

$$ e^{-2\gamma q^{-L+w -1 } - 2 \gamma q^{-m+w-1} + q^{-1}} \geqslant 1. $$

We have hence proved that \( \left|{\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )} \right| \geqslant q^{(L+m - w )w}\). Next, by similar techniques, we can show that

$$\begin{aligned} \left|{\mathbb {S}_{w}\big (\mathbb {F}_{q^m}^L\big )} \right| &\leqslant q^{(L+m-w)w} \; e^{\left( -q^{-L} - q^{-m} + 2 q^{-w} \right) \frac{q^w-1}{q-1}}\\ &\leqslant q^{(L+m-w)w} \; e^{ 2 q^{-w} \frac{q^w-1}{q-1}} \leqslant q^{(L+m-w)w} \; e^{ 2/(q-1)} \end{aligned}$$

which concludes the proof of the lemma.    \(\square \)

B Upper-Bound on the Decoding Failure Probability

We now turn to the question of proving Theorem 2 by bounding the probability \({{\,\mathrm{\mathbb {P}}\,}}\Big \{{{\,\mathrm{\Phi }\,}}({\textbf{H}}, {\textbf{H}}{\textbf{E}}) \ne {\textbf{E}}\Big \}\) that \({{\,\mathrm{\Phi }\,}}\) fails on a random input \(({\textbf{H}},{\textbf{H}}{\textbf{E}})\). For that purpose we define by \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) and \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\) the probability that \({{\,\mathrm{\Phi }\,}}\) fails at the first and second step respectively. We then clearly have \({{\,\mathrm{\mathbb {P}}\,}}\Big \{{{\,\mathrm{\Phi }\,}}({\textbf{H}}, {\textbf{H}}{\textbf{E}}) \ne {\textbf{E}}\Big \} = {{\,\mathrm{\mathbb {P}}\,}}_\textrm{I} + (1- {{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}) {{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\) which implies that \( {{\,\mathrm{\mathbb {P}}\,}}\Big \{{{\,\mathrm{\Phi }\,}}({\textbf{H}}, {\textbf{H}}{\textbf{E}}) \ne {\textbf{E}}\Big \} \leqslant {{\,\mathrm{\mathbb {P}}\,}}_\textrm{I} + {{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}. \) We have seen in Sect. 4 that the decoding algorithm \({{\,\mathrm{\Phi }\,}}\) fail during the first step if one of the following two events occur: either \(\langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}}\) is not equal to \(\mathcal {E} \cdot \mathcal {W}_r\) for every \(r \in \left\{ 1,\dots ,\ell \right\} \), or each time we have the equality \(\langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} = \mathcal {E} \cdot \mathcal {W}_r\), the strict inclusion \(\mathcal {E} \; \subsetneq \; \bigcap _{i=1}^w \left( f^{(r)}_i\right) ^{-1} \cdot \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}}\) holds. As by assumption the rows of \({\textbf{H}}\) are drawn independently, we see that \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) is at most

$$\begin{aligned} \prod _{r = 1}^\ell \left( {{\,\mathrm{\mathbb {P}}\,}}\Big \{ \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} \ne \mathcal {E} \cdot \mathcal {W}_r \Big \} + {{\,\mathrm{\mathbb {P}}\,}}\left\{ \mathcal {E} \ne \bigcap _{i=1}^w \left( f^{(r)}_{i}\right) ^{-1} \cdot \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} \;\; \Big \vert \;\; \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} = \mathcal {E} \cdot \mathcal {W}_r\right\} \right) . \end{aligned}$$
(4)

The last failure case is although \(\langle {{\textbf{E}}} {\rangle }_{{\mathbb {F}_q}}\) has been correctly computed, it cannot compute the entries of \({\textbf{E}}\) because for at least one r in \(\left\{ 1,\dots ,\ell \right\} \), the dimension of \(\mathcal {E} \cdot \mathcal {W}_r\) is not equal to tw. We see that we have

$$\begin{aligned} {{\,\mathrm{\mathbb {P}}\,}}_\textrm{II} = 1 - \prod _{r=1}^\ell {{\,\mathrm{\mathbb {P}}\,}}\Big \{\dim \; \mathcal {E} \cdot \mathcal {W}_r = tw \Big \}. \end{aligned}$$
(5)

The rest of this section is devoted to proving bounds for \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) and \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\), mainly using results from LRPC decoding described in [67].

In order to bound \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{I}\) we bound \({{\,\mathrm{\mathbb {P}}\,}}\Big \{ \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} \ne \mathcal {E} \cdot \mathcal {W}_r \Big \}\) with Proposition 5 and \({{\,\mathrm{\mathbb {P}}\,}}\left\{ \mathcal {E} \ne \bigcap _{i=1}^w \left( f^{(r)}_{i}\right) ^{-1} \cdot \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}}\;\; \Big \vert \;\; \langle {{\textbf{s}}_r} {\rangle }_{{\mathbb {F}_q}} = \mathcal {E} \cdot \mathcal {W}_r \right\} \) in Theorem 4, and with (4) we get the result.

Proposition 5

(Proposition 3 in [67]). Assume that \(N \geqslant tw\). For a random homogeneous matrix \({\textbf{E}}\xleftarrow {\$}\mathcal {E}^{n \times N}\) and a random vector \({\textbf{h}}\xleftarrow {\$}\mathcal {W}^n\) where \(\mathcal {E} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{t}(q,m)\) and \(\mathcal {W} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{w}(q,m)\), the probability that \(\langle {{\textbf{h}}{\textbf{E}}} {\rangle }_{{\mathbb {F}_q}}\) is different from \(\mathcal {E} \cdot \mathcal {W}\) is at most

$$ {{\,\mathrm{\mathbb {P}}\,}}\left\{ \langle {{\textbf{h}}{\textbf{E}}} {\rangle }_{{\mathbb {F}_q}} \ne \mathcal {E} \cdot \mathcal {W} \right\} \leqslant 1 - \prod _{i=0}^{tw-1} \left( 1 - q^{i-N} \right) $$

Theorem 4

(Theorem 2 in [67]). Let \(\mathcal {U} \triangleq \mathcal {E} \cdot \mathcal {W}\) where \(\mathcal {W} \in \boldsymbol{\textrm{Gr}}_{w}(q,m)\) and \(\mathcal {E} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{t}(q,m)\) with \((2w-1)t < m\). Then for an arbitrary basis \(f_1,\dots {},f_w\) of \(\mathcal {W}\), we have

$$\begin{aligned} {{\,\mathrm{\mathbb {P}}\,}}\left\{ \mathcal {E} = \bigcap _{i=1}^w f_i^{-1} \cdot \mathcal {U} \;\; \Big \vert \;\;\mathcal {E} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{t}(q,m) \right\} \; \geqslant \; 1 - \frac{q^{(2w - 1)t}}{q^m - q^{t-1}}\cdot \end{aligned}$$

For \({{\,\mathrm{\mathbb {P}}\,}}_\textrm{II}\), we bound \({{\,\mathrm{\mathbb {P}}\,}}\Big \{\dim \; \mathcal {E} \cdot \mathcal {W}_r = tw \Big \}\) in Proposition 6 and use (5).

Proposition 6

(Proposition 4 in [67]). For \(\mathcal {W} \in \boldsymbol{\textrm{Gr}}_{w}(q,m)\) and assuming that \(wt < m\), we have

$$\begin{aligned} {{\,\mathrm{\mathbb {P}}\,}}\Big \{\dim \; \mathcal {E} \cdot \mathcal {W} = tw \;\; \Big \vert \;\; \mathcal {E} \xleftarrow {\$}\boldsymbol{\textrm{Gr}}_{t}(q,m)\Big \} \; \geqslant \; 1 - \frac{q^{wt}}{q^m - q^{t-1}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burle, É., Gaborit, P., Hatri, Y., Otmani, A. (2024). Injective Rank Metric Trapdoor Functions with Homogeneous Errors. In: Smith, B., Wu, H. (eds) Selected Areas in Cryptography. SAC 2022. Lecture Notes in Computer Science, vol 13742. Springer, Cham. https://doi.org/10.1007/978-3-031-58411-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58411-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58410-7

  • Online ISBN: 978-3-031-58411-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics