Skip to main content

Querying Healthcare Data in Knowledge-Based Systems

  • Conference paper
  • First Online:
Big Data Analytics in Astronomy, Science, and Engineering (BDA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14516))

Included in the following conference series:

  • 206 Accesses

Abstract

In the ever-evolving healthcare landscape, integrating knowledge-based systems into data querying processes is becoming imperative. The existing challenges in querying healthcare data lie in the complexity of extracting meaningful insights from vast and heterogeneous datasets. EHRs store different forms of data, and query systems’ scalability and performance, especially considering the increasing volume of EHR data, are the main challenges faced. To overcome these challenges, the paper proposes a system with a user-friendly graphical interface for creating Archetype Query Language (AQL) queries in openEHR systems. It consists of three components: User Interface, which allows the user to specify query parameters, modify EHRs paths, filter data, and customize query results; Query builder, which creates the AQL query based on input from the User Interface and Repository of Documents where the compositions are stored and the query result obtained from this component is sent back to User Interface. It stands out with its innovative approach, systematically extracting openEHR schemas and simplifying the creation of complex AQL queries. The system’s effectiveness and user satisfaction make learning, using, and developing queries for graph-driven healthcare data knowledge easy. The system enhances the overall functionality and usability of the query builder within the system. It offers a pathway to improved clinical decision-making and patient care outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rocha, E.S.B., et al.: Knowledge management in health: a systematic literature review. Rev. latino-americana enfermagem 20, 392–400 (2012)

    Article  Google Scholar 

  2. Campanella, P., et al.: The impact of electronic health records on healthcare quality: a systematic review and meta-analysis. Eur. J. Public Health 26(1), 60–64 (2016)

    Article  Google Scholar 

  3. Dolin, R.H., et al.: The HL7 clinical document architecture. J. Am. Med. Inform. Assoc. 8(6), 552–569 (2001)

    Article  Google Scholar 

  4. CEN EN 13606-1. Health informatics–Electronic health record communication–Part 1: Reference model. Draft European Standard for CEN Enquiry prEN 13606-1. European Committee for Standardization, Brussels, Belgium (2004)

    Google Scholar 

  5. Kalra, D., Beale, T., Heard, S.: The openEHR foundation. Stud. Health Technol. Inform. 115, 153–173 (2005)

    Google Scholar 

  6. Eichelberg, M., et al.: A survey and analysis of electronic healthcare record standards. ACM Comput. Surv. (CSUR) 37(4), 277–315 (2005)

    Article  Google Scholar 

  7. Beale, T., Heard, S.: openEHR architecture: architecture overview in the openEHR release 1.0.2. In: Beale T and Heard S, eds. openEHR Foundation (2008)

    Google Scholar 

  8. Blobel, B., Pharow, P. (eds.): Advanced Health Telematics and Telemedicine: The Magdeburg Expert Summit Textbook, vol. 96. IOS Press (2003)

    Google Scholar 

  9. Towards the interoperability of computerised guidelines and electronic health records: an experiment with openEHR archetypes and a chronic heart failure guideline – Scientific Figure on ResearchGate. https://www.researchgate.net/figure/openEHR-archetype-for-the-blood-pressure-concept-diagram-taken-from-the-openEHR_fig1_220836902

  10. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37 (2021)

    Google Scholar 

  11. Abu-Salih, B.: Domain-specific knowledge graphs: a survey. J. Netw. Comput. Appl. 185, 103076 (2021)

    Article  Google Scholar 

  12. Sheth, A., Padhee, S., Gyrard, A.: Knowledge graphs and knowledge networks: the story in brief. IEEE Internet Comput. 23(4), 67–75 (2019)

    Article  Google Scholar 

  13. Archetype Definition Language 1.4 (ADL1.4). Archetype Definition Language 1.4 (ADL1.4). https://specifications.openehr.org/releases/AM/latest/ADL1.4.html

  14. Extensible Markup Language (XML). https://www.w3.org/XML/

  15. Web Ontology Language (OWL). https://www.w3.org/OWL/

  16. Object Constraint Language (OCL). https://www.omg.org/spec/OCL/2.4/About-OCL/

  17. Knowledge Interchange Format. http://www-ksl.stanford.edu/knowledge-sharing/kif/

  18. Beale, T., Heard, S.: openEHR specification project release 101. 1.4. 0. The openEHR Foundation, London (2007)

    Google Scholar 

  19. Foster, E.C., Godbole, S.V., Foster, E.C., Godbole, S.V.: Overview of SQL. Database Syst.: Pragmatic Approach 171–175 (2014)

    Google Scholar 

  20. Boag, S., et al.: XQuery 1.0: an XML query language (2002)

    Google Scholar 

  21. Clinical Quality Language. https://cql.hl7.org/

  22. Cerner interoperability solution. https://www.cerner.com/solutions/interoperability

  23. Ma, C., et al.: EHR query language (EQL)-a query language for archetype-based health records. Medinfo 129, 397–401 (2007)

    Google Scholar 

  24. Archetype Query Language. https://specifications.openehr.org/releases/QUERYLANGUAGE/latest/AQL.html

  25. Martínez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J.T.: An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J. Biomed. Inform. 43(5), 736–746 (2010)

    Article  Google Scholar 

  26. Min, L., et al.: An openEHR based approach to improve the semantic interoperability of clinical data registry. BMC Med. Inform. Decis. Making 18(1), 49–56 (2018)

    Google Scholar 

  27. Sachdeva, S., Bhalla, S.: Implementing high-level query language interfaces for archetype-based electronic health records database. In: International Conference on Management of Data (COMAD) (2009)

    Google Scholar 

  28. Kahng, M., et al.: Interactive browsing and navigation in relational databases. arXiv preprint arXiv:1603.02371 (2016)

  29. Soni, K., Sachdeva, S., Goyal, A., Gupta, A., Bose, D., Bhalla, S.: Saral Anuyojan: an interactive querying interface for EHR. In: Sachdeva, S., Watanobe, Y., Bhalla, S. (eds.) BDA 2022. LNCS, vol. 13830, pp. 163–176. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28350-5_13

    Chapter  Google Scholar 

  30. Bakke, E., Karger, D.R., Miller, R.C.: Automatic layout of structured hierarchical reports. IEEE Trans. Visual Comput. Graphics 19(12), 2586–2595 (2013)

    Article  Google Scholar 

  31. Bakke, E., Karger, D.R.: Expressive query construction through direct manipulation of nested relational results. In: Proceedings of the 2016 International Conference on Management of Data (2016)

    Google Scholar 

  32. Qin, X., et al.: Making data visualization more efficient and effective: a survey. VLDB J. 29, 93–117 (2020)

    Article  Google Scholar 

  33. Li, M., et al.: Development of an openEHR template for COVID-19 based on clinical guidelines. J. Med. Internet Res. 22(6), e20239 (2020)

    Article  Google Scholar 

  34. Wang, M., et al.: Adverse drug reaction discovery using a tumor-biomarker knowledge graph. Front. Genet. 11, 625659 (2021)

    Article  Google Scholar 

  35. Cui, L., et al.: Deterrent: Knowledge guided graph attention network for detecting healthcare misinformation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020)

    Google Scholar 

  36. Wang, Q., et al.: COVID-19 literature knowledge graph construction and drug repurposing report generation. arXiv preprint arXiv:2007.00576 (2020)

  37. Shang, J., et al.: GameNet: graph augmented memory networks for recommending medication combination. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01 (2019)

    Google Scholar 

  38. Xie, J., et al.: Learning an expandable EMR-based medical knowledge network to enhance clinical diagnosis. Artif. Intell. Med. 107, 101927 (2020)

    Article  Google Scholar 

  39. Chen, I.Y., et al.: Robustly extracting medical knowledge from EHRs: a case study of learning a health knowledge graph. In: Pacific Symposium on Biocomputing 2020 (2019)

    Google Scholar 

  40. EHRBase. https://ehrbase.org/

  41. Ocean Health Systems, Sebastian Garde. Clinical Knowledge Manager. Clinical Knowledge Manager. https://ckm.openehr.org/ckm/

  42. Archetype Designer. https://tools.openehr.org/designer/

  43. Ramesh, S.: Introducing medblocks ui. https://blog.medblocks.org/2021-01-26-introducing-medblocks-ui/

  44. Svelte. https://svelte.dev/

  45. REST API J. Ratliff, Docker: Accelerated, containerized application development (2022). https://www.docker.com

  46. Leventidis, A., et al.: QueryVis: logic-based diagrams help users understand complicated SQL queries faster. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2020)

    Google Scholar 

  47. Ramos, M., et al.: An archetype query language interpreter into MongoDB: managing NoSQL standardized electronic health record extracts systems. J. Biomed. Inf. 101, 103339 (2020)

    Article  Google Scholar 

  48. Jaakkola, H., Thalheim, B.: Visual SQL – high-quality ER-based query treatment. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER 2003. LNCS, vol. 2814, pp. 129–139. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39597-3_13

    Chapter  Google Scholar 

  49. Stolte, C., Tang, D., Hanrahan, P.: Polaris: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans. Visual Comput. Graphics 8(1), 52–65 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly Sachdeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soni, K., Sachdeva, S., Minj, A. (2024). Querying Healthcare Data in Knowledge-Based Systems. In: Sachdeva, S., Watanobe, Y. (eds) Big Data Analytics in Astronomy, Science, and Engineering. BDA 2023. Lecture Notes in Computer Science, vol 14516. Springer, Cham. https://doi.org/10.1007/978-3-031-58502-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58502-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58501-2

  • Online ISBN: 978-3-031-58502-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics