Abstract
In the ever-evolving healthcare landscape, integrating knowledge-based systems into data querying processes is becoming imperative. The existing challenges in querying healthcare data lie in the complexity of extracting meaningful insights from vast and heterogeneous datasets. EHRs store different forms of data, and query systems’ scalability and performance, especially considering the increasing volume of EHR data, are the main challenges faced. To overcome these challenges, the paper proposes a system with a user-friendly graphical interface for creating Archetype Query Language (AQL) queries in openEHR systems. It consists of three components: User Interface, which allows the user to specify query parameters, modify EHRs paths, filter data, and customize query results; Query builder, which creates the AQL query based on input from the User Interface and Repository of Documents where the compositions are stored and the query result obtained from this component is sent back to User Interface. It stands out with its innovative approach, systematically extracting openEHR schemas and simplifying the creation of complex AQL queries. The system’s effectiveness and user satisfaction make learning, using, and developing queries for graph-driven healthcare data knowledge easy. The system enhances the overall functionality and usability of the query builder within the system. It offers a pathway to improved clinical decision-making and patient care outcomes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rocha, E.S.B., et al.: Knowledge management in health: a systematic literature review. Rev. latino-americana enfermagem 20, 392–400 (2012)
Campanella, P., et al.: The impact of electronic health records on healthcare quality: a systematic review and meta-analysis. Eur. J. Public Health 26(1), 60–64 (2016)
Dolin, R.H., et al.: The HL7 clinical document architecture. J. Am. Med. Inform. Assoc. 8(6), 552–569 (2001)
CEN EN 13606-1. Health informatics–Electronic health record communication–Part 1: Reference model. Draft European Standard for CEN Enquiry prEN 13606-1. European Committee for Standardization, Brussels, Belgium (2004)
Kalra, D., Beale, T., Heard, S.: The openEHR foundation. Stud. Health Technol. Inform. 115, 153–173 (2005)
Eichelberg, M., et al.: A survey and analysis of electronic healthcare record standards. ACM Comput. Surv. (CSUR) 37(4), 277–315 (2005)
Beale, T., Heard, S.: openEHR architecture: architecture overview in the openEHR release 1.0.2. In: Beale T and Heard S, eds. openEHR Foundation (2008)
Blobel, B., Pharow, P. (eds.): Advanced Health Telematics and Telemedicine: The Magdeburg Expert Summit Textbook, vol. 96. IOS Press (2003)
Towards the interoperability of computerised guidelines and electronic health records: an experiment with openEHR archetypes and a chronic heart failure guideline – Scientific Figure on ResearchGate. https://www.researchgate.net/figure/openEHR-archetype-for-the-blood-pressure-concept-diagram-taken-from-the-openEHR_fig1_220836902
Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37 (2021)
Abu-Salih, B.: Domain-specific knowledge graphs: a survey. J. Netw. Comput. Appl. 185, 103076 (2021)
Sheth, A., Padhee, S., Gyrard, A.: Knowledge graphs and knowledge networks: the story in brief. IEEE Internet Comput. 23(4), 67–75 (2019)
Archetype Definition Language 1.4 (ADL1.4). Archetype Definition Language 1.4 (ADL1.4). https://specifications.openehr.org/releases/AM/latest/ADL1.4.html
Extensible Markup Language (XML). https://www.w3.org/XML/
Web Ontology Language (OWL). https://www.w3.org/OWL/
Object Constraint Language (OCL). https://www.omg.org/spec/OCL/2.4/About-OCL/
Knowledge Interchange Format. http://www-ksl.stanford.edu/knowledge-sharing/kif/
Beale, T., Heard, S.: openEHR specification project release 101. 1.4. 0. The openEHR Foundation, London (2007)
Foster, E.C., Godbole, S.V., Foster, E.C., Godbole, S.V.: Overview of SQL. Database Syst.: Pragmatic Approach 171–175 (2014)
Boag, S., et al.: XQuery 1.0: an XML query language (2002)
Clinical Quality Language. https://cql.hl7.org/
Cerner interoperability solution. https://www.cerner.com/solutions/interoperability
Ma, C., et al.: EHR query language (EQL)-a query language for archetype-based health records. Medinfo 129, 397–401 (2007)
Archetype Query Language. https://specifications.openehr.org/releases/QUERYLANGUAGE/latest/AQL.html
MartĂnez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J.T.: An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J. Biomed. Inform. 43(5), 736–746 (2010)
Min, L., et al.: An openEHR based approach to improve the semantic interoperability of clinical data registry. BMC Med. Inform. Decis. Making 18(1), 49–56 (2018)
Sachdeva, S., Bhalla, S.: Implementing high-level query language interfaces for archetype-based electronic health records database. In: International Conference on Management of Data (COMAD) (2009)
Kahng, M., et al.: Interactive browsing and navigation in relational databases. arXiv preprint arXiv:1603.02371 (2016)
Soni, K., Sachdeva, S., Goyal, A., Gupta, A., Bose, D., Bhalla, S.: Saral Anuyojan: an interactive querying interface for EHR. In: Sachdeva, S., Watanobe, Y., Bhalla, S. (eds.) BDA 2022. LNCS, vol. 13830, pp. 163–176. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28350-5_13
Bakke, E., Karger, D.R., Miller, R.C.: Automatic layout of structured hierarchical reports. IEEE Trans. Visual Comput. Graphics 19(12), 2586–2595 (2013)
Bakke, E., Karger, D.R.: Expressive query construction through direct manipulation of nested relational results. In: Proceedings of the 2016 International Conference on Management of Data (2016)
Qin, X., et al.: Making data visualization more efficient and effective: a survey. VLDB J. 29, 93–117 (2020)
Li, M., et al.: Development of an openEHR template for COVID-19 based on clinical guidelines. J. Med. Internet Res. 22(6), e20239 (2020)
Wang, M., et al.: Adverse drug reaction discovery using a tumor-biomarker knowledge graph. Front. Genet. 11, 625659 (2021)
Cui, L., et al.: Deterrent: Knowledge guided graph attention network for detecting healthcare misinformation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020)
Wang, Q., et al.: COVID-19 literature knowledge graph construction and drug repurposing report generation. arXiv preprint arXiv:2007.00576 (2020)
Shang, J., et al.: GameNet: graph augmented memory networks for recommending medication combination. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01 (2019)
Xie, J., et al.: Learning an expandable EMR-based medical knowledge network to enhance clinical diagnosis. Artif. Intell. Med. 107, 101927 (2020)
Chen, I.Y., et al.: Robustly extracting medical knowledge from EHRs: a case study of learning a health knowledge graph. In: Pacific Symposium on Biocomputing 2020 (2019)
EHRBase. https://ehrbase.org/
Ocean Health Systems, Sebastian Garde. Clinical Knowledge Manager. Clinical Knowledge Manager. https://ckm.openehr.org/ckm/
Archetype Designer. https://tools.openehr.org/designer/
Ramesh, S.: Introducing medblocks ui. https://blog.medblocks.org/2021-01-26-introducing-medblocks-ui/
Svelte. https://svelte.dev/
REST API J. Ratliff, Docker: Accelerated, containerized application development (2022). https://www.docker.com
Leventidis, A., et al.: QueryVis: logic-based diagrams help users understand complicated SQL queries faster. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2020)
Ramos, M., et al.: An archetype query language interpreter into MongoDB: managing NoSQL standardized electronic health record extracts systems. J. Biomed. Inf. 101, 103339 (2020)
Jaakkola, H., Thalheim, B.: Visual SQL – high-quality ER-based query treatment. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER 2003. LNCS, vol. 2814, pp. 129–139. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39597-3_13
Stolte, C., Tang, D., Hanrahan, P.: Polaris: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans. Visual Comput. Graphics 8(1), 52–65 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Soni, K., Sachdeva, S., Minj, A. (2024). Querying Healthcare Data in Knowledge-Based Systems. In: Sachdeva, S., Watanobe, Y. (eds) Big Data Analytics in Astronomy, Science, and Engineering. BDA 2023. Lecture Notes in Computer Science, vol 14516. Springer, Cham. https://doi.org/10.1007/978-3-031-58502-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-58502-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58501-2
Online ISBN: 978-3-031-58502-9
eBook Packages: Computer ScienceComputer Science (R0)