Skip to main content

Boosting Diagnostic Accuracy of Osteoporosis in Knee Radiograph Through Fine-Tuning CNN

  • Conference paper
  • First Online:
Big Data Analytics in Astronomy, Science, and Engineering (BDA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14516))

Included in the following conference series:

  • 38 Accesses

Abstract

Osteoporosis is a serious worldwide medical problem that might be challenging to identify promptly owing to the absence of indicators. At the moment, DEXA scans, CT scans, and other techniques with expensive devices and payroll expenses are the mainstays of osteoporosis evaluation. Consequently, an improved, accurate and affordable approach is essential for osteoporosis diagnosis. With the advancement of deep learning, systems for the automated identification of illnesses are regularly presented. Leveraging datasets from chest X-rays accessible for free, the present research assesses the efficacy of several convolutional neural network (CNN) models with the best extreme parameters for osteoporosis detection. Both custom CNN designs and already trained CNN structures for VGG-16 have been incorporated into the assessed system. According to the research results, the VGG-16 with fine-tuning outperformed the one without fine-tuning with an 86.36% accuracy, 86.67% precision, 86.36% recall and 86.34% f1-score, which makes it a potential and reliable model for osteoporosis prediction. The automated diagnosis approach built on CNN can help practitioners promptly, correctly, and reliably identify osteoporosis. This development results from enhanced patient outcomes and increased system productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Osteoporosis Foundation. Key Statistics For Europe. https://www.osteoporosis.foundation. Accessed 4 June 2023

  2. Camacho, P.M., Petak, S.M., Binkley, N.: American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2016. Endocr. Pract. 22(Suppl. 4), 1–42 (2016)

    Article  Google Scholar 

  3. Smets, J., Shevroja, E., Hügle, T., Leslie, W.D., Hans, D.: Machine learning solutions for osteoporosis-a review. J. Bone Miner. Res. 36(5), 833–851 (2021)

    Article  Google Scholar 

  4. Tang, C., et al.: CNN-based qualitative detection of bone mineral density via diagnostic CT slices for osteoporosis screening. Journal 32, 971–979 (2021)

    Google Scholar 

  5. Fang, Y., et al.: Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks. Eur. Radiol. 31, 1831–1842 (2021)

    Article  Google Scholar 

  6. Batra, S., Sachdeva, S.: Organizing standardized electronic healthcare records data for mining. Journal 5(3), 226–242 (2016)

    Google Scholar 

  7. Batra, S., Sachdeva, S.: Pre-processing highly sparse and frequently evolving standardized electronic health records for mining. In: Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning, pp. 8–21. IGI Global (2021)

    Google Scholar 

  8. Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Mark. 31(3), 685–695 (2021)

    Article  Google Scholar 

  9. Tang, D., et al.: A novel model based on deep convolutional neural network improves diagnostic accuracy of intramucosal gastric cancer (with video). Front. Oncol. 11, 622827 (2021)

    Article  Google Scholar 

  10. Singh, V., Asari, V.K., Rajasekaran, R.: A deep neural network for early detection and prediction of chronic kidney disease. Diagnostics 12(1), 116 (2022)

    Article  Google Scholar 

  11. Lei, Y., Belkacem, A.N., Wang, X., Sha, S., Wang, C., Chen, C.: A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders. Biomed. Signal Process. Control 72, 103370 (2022)

    Article  Google Scholar 

  12. Sachdeva, S.: Standard based personalized healthcare delivery for kidney illness using deep learning. Physiol. Measur. (2023)

    Google Scholar 

  13. Pawar, V., Sachdeva, S.: CovidBChain: framework for access-control, authentication, and integrity of Covid-19 data. Concurr. Comput. Pract. Experience 34(28), e7397 (2022)

    Article  Google Scholar 

  14. Tassoker, M., Öziç, M.Ü., Yuce, F.: Comparison of five convolutional neural networks for predicting osteoporosis based on mandibular cortical index on panoramic radiographs. Dentomaxillofacial Radiol. 51(6), 20220108 (2022)

    Article  Google Scholar 

  15. Batra, S., et al.: An intelligent sensor based decision support system for diagnosing pulmonary ailment through standardized chest X-ray scans. Sensors 22(19), 7474 (2022)

    Article  Google Scholar 

  16. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53, 5455–5516 (2020)

    Article  Google Scholar 

  17. Batra, S., Khurana, R., Khan, M.Z., Boulila, W., Koubaa, A., Srivastava, P.: A pragmatic ensemble strategy for missing values imputation in health records. Entropy 24(4), 533 (2022)

    Article  Google Scholar 

  18. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)

    Article  Google Scholar 

  19. Alafif, T., Tehame, A.M., Bajaba, S., Barnawi, A., Zia, S.: Machine and deep learning towards COVID-19 diagnosis and treatment: survey, challenges, and future directions. Int. J. Environ. Res. Public Health 18(3), 1117 (2021)

    Article  Google Scholar 

  20. Nayak, S.R., Nayak, D.R., Sinha, U., Arora, V., Pachori, R.B.: Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study. Biomed. Signal Process. Control 64, 102365 (2021)

    Article  Google Scholar 

  21. Gatto, A., Accarino, G., Aloisi, V., Immorlano, F., Donato, F., Aloisio, G.: Limits of compartmental models and new opportunities for machine learning: a case study to forecast the second wave of COVID-19 hospitalizations in Lombardy, Italy. Informatics 8(3), 57 (2021)

    Article  Google Scholar 

  22. Paul, S.G., et al.: Combating Covid-19 using machine learning and deep learning: applications, challenges, and future perspectives. Array 17, 100271 (2023)

    Article  Google Scholar 

  23. Chen, H., et al.: Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 515–522. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_63

    Chapter  Google Scholar 

  24. Yang, D., et al.: Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 633–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_50

    Chapter  Google Scholar 

  25. Zhao, S., Wu, X., Chen, B., Li, S.: Automatic vertebrae recognition from arbitrary spine MRI images by a category-Consistent self-calibration detection framework. Med. Image Anal. 67, 101826 (2021)

    Article  Google Scholar 

  26. Yoo, T.K., Kim, S.K., Oh, E., Kim, D.W.: Risk prediction of femoral neck osteoporosis using machine learning and conventional methods. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 181–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38682-4_21

    Chapter  Google Scholar 

  27. de Lira, C.P., et al.: Use of data mining to predict the risk factors associated with osteoporosis and osteopenia in women. CIN: Comput. Inform. Nurs. 34(8), 369–375 (2016)

    Google Scholar 

  28. Tafraouti, A., El Hassouni, M., Toumi, H., Lespessailles, E., Jennane, R.: Osteoporosis diagnosis using fractal analysis and support vector machine. In: 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems, Marrakech, Morocco, pp. 73–77. IEEE (2014)

    Google Scholar 

  29. Kilic, N., Hosgormez, E.: Automatic estimation of osteoporotic fracture cases by using ensemble learning approaches. J. Med. Syst. 40, 1–10 (2016)

    Article  Google Scholar 

  30. Jang, M., Kim, M., Bae, S.J., Lee, S.H., Koh, J.M., Kim, N.: Opportunistic osteoporosis screening using chest radiographs with deep learning: development and external validation with a cohort dataset. J. Bone Miner. Res. 37(2), 369–377 (2022)

    Article  Google Scholar 

  31. Xue, L., et al.: A dual-selective channel attention network for osteoporosis prediction in computed tomography images of lumbar spine. Acadlore Trans. AI Mach. Learn. 1(1), 30–39 (2022)

    Article  Google Scholar 

  32. Dzierżak, R., Omiotek, Z.: Application of deep convolutional neural networks in the diagnosis of osteoporosis. Sensors 22(21), 8189 (2022)

    Article  Google Scholar 

  33. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  34. Osteoporosis Knee X-ray Dataset. https://www.kaggle.com/datasets/stevepython/osteoporosis-knee-xray-dataset. Accessed 4 June 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Puneet Goswami or Shivani Batra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Goswami, P., Batra, S. (2024). Boosting Diagnostic Accuracy of Osteoporosis in Knee Radiograph Through Fine-Tuning CNN. In: Sachdeva, S., Watanobe, Y. (eds) Big Data Analytics in Astronomy, Science, and Engineering. BDA 2023. Lecture Notes in Computer Science, vol 14516. Springer, Cham. https://doi.org/10.1007/978-3-031-58502-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58502-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58501-2

  • Online ISBN: 978-3-031-58502-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics