Skip to main content

A Comprehensive Study on Pre-trained Models for Skin Lesion Diagnosis in a Federated Setting

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Abstract

Privacy has been one of the main concerns when it comes to the application of deep learning in the medical domain. Medical institutes prioritizing the privacy of their patients do not make their data public, making it difficult to build better models to diagnose rare diseases. But, after the advent of federated learning, there have been immense improvements toward building better models that employ patient’s private data without compromising their privacy. In this paper, we comprehensively study multiple models to diagnose skin lesions in a federated setting. Replicating real-life scenarios, we experiment in different settings where the number of clients or hospitals that participate varies. Further, we explore if the pre-trained weights obtained from natural image datasets could assist in building a better model for diagnosing skin lesions.

This work was funded by the Department of Science and Technology (DST) under the Fund for Improvement of S &T Infrastructure (FIST), Govt. of India [Grant no. SR/FST/ET-I/2020/578], and Science and Engineering Research Board (SERB) [Grant no. EEQ/2021/000804].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pytorch.org/vision/stable/models.html.

References

  1. Sample, A., He, Y.Y.: Mechanisms and prevention of UV-induced melanoma. Photodermatol. Photoimmunol. Photomed. 34(1), 13–24 (2018)

    Article  Google Scholar 

  2. Fabbrocini, G., et al.: Epidemiology of skin cancer: role of some environmental factors. Cancers 2(4), 1980–1989 (2010)

    Article  Google Scholar 

  3. Brinker, T.J., et al.: Skin cancer classification using convolutional neural networks: systematic review. J. Med. Internet Res. 20(10), e11936 (2018)

    Article  Google Scholar 

  4. Bhattacharya, A., Young, A., Wong, A., Stalling, S., Wei, M., Hadley, D.: Precision diagnosis of melanoma and other skin lesions from digital images. AMIA Summits Transl. Sci. Proc. 2017, 220 (2017)

    Google Scholar 

  5. American Cancer Society: Cancer Facts & Figures 2022. American Cancer Society, Atlanta (2022)

    Google Scholar 

  6. Argenziano, G., Soyer, H.P.: Dermoscopy of pigmented skin lesions-a valuable tool for early. Lancet Oncol. 2(7), 443–449 (2001)

    Article  Google Scholar 

  7. Ali, A.R.A., Deserno, T.M.: A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data. In: Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment, vol. 8318, pp. 421–431 (2012)

    Google Scholar 

  8. Sarrafzade, O., Baygi, M.H.M., Ghassemi, P.: Skin lesion detection in dermoscopy images using wavelet transform and morphology operations. In: 17th Iranian Conference of Biomedical Engineering (ICBME), pp. 1–4. IEEE (2010)

    Google Scholar 

  9. Fatichah, C., Amaliah, B., Widyanto, M.R.: Skin lesion detection using fuzzy region growing and ABCD feature extraction for melanoma skin cancer diagnosis. In: International Workshop on Advanced Computational Intelligence and Intelligent Informatics, IWACIII 2009 (2009)

    Google Scholar 

  10. Chiem, A., Al-Jumaily, A., Khushaba, R.N.: A novel hybrid system for skin lesion detection. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, pp. 567–572. IEEE (2007)

    Google Scholar 

  11. Cula, G.O., Bargo, P.R., Kollias, N.: Imaging inflammatory acne: lesion detection and tracking. In: Photonic Therapeutics and Diagnostics VI, vol. 7548, pp. 120–126. SPIE (2010)

    Google Scholar 

  12. Yuan, Y.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:1703.05165 (2017)

  13. Li, Y., Shen, L.: Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2), 556 (2018)

    Article  Google Scholar 

  14. Goyal, M., Oakley, A., Bansal, P., Dancey, D., Yap, M.H.: Skin lesion segmentation in dermoscopic images with ensemble deep learning methods. IEEE Access 8, 4171–4181 (2019)

    Article  Google Scholar 

  15. Bissoto, A., Perez, F., Valle, E., Avila, S.: Skin lesion synthesis with generative adversarial networks. CoRR abs/1902.03253 (2019)

    Google Scholar 

  16. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  17. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  18. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  19. Pratap, T., Kokil, P.: Computer-aided diagnosis of cataract using deep transfer learning. Biomed. Sig. Process. Control 53, 101533 (2019)

    Article  Google Scholar 

  20. Pratap, T., Kokil, P.: Deep neural network based robust computer-aided cataract diagnosis system using fundus retinal images. Biomed. Sig. Process. Control 70, 102985 (2021)

    Article  Google Scholar 

  21. Krishna, T.B., Kokil, P.: Automated classification of common maternal fetal ultrasound planes using multi-layer perceptron with deep feature integration. Biomed. Sig. Process. Control 86, 105283 (2023)

    Article  Google Scholar 

  22. Krishna, T.B., Kokil, P.: Automated detection of common maternal fetal ultrasound planes using deep feature fusion. In: 19th India Council International Conference (INDICON), pp. 1–5. IEEE (2022)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  26. Jain, S., Singhania, U., Tripathy, B., Nasr, E.A., Aboudaif, M.K., Kamrani, A.K.: Deep learning-based transfer learning for classification of skin cancer. Sensors 21(23), 8142 (2021)

    Article  Google Scholar 

  27. Hosny, K.M., Kassem, M.A., Foaud, M.M.: Classification of skin lesions using transfer learning and augmentation with AlexNet. PLoS ONE 14(5), e0217293 (2019)

    Article  Google Scholar 

  28. Gouda, N., Amudha, J.: Skin cancer classification using ResNet. In: 5th International Conference on Computing Communication and Automation (ICCCA), pp. 536–541. IEEE (2020)

    Google Scholar 

  29. McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  30. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  31. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  32. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  33. Xu, Y., Zhang, Q., Zhang, J., Tao, D.: ViTAE: vision transformer advanced by exploring intrinsic inductive bias. In: Advances in Neural Information Processing Systems, vol. 34, pp. 28522–28535 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Kokil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddarth, C., Poreddy, A.K.R., Kokil, P. (2024). A Comprehensive Study on Pre-trained Models for Skin Lesion Diagnosis in a Federated Setting. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2011. Springer, Cham. https://doi.org/10.1007/978-3-031-58535-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58535-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58534-0

  • Online ISBN: 978-3-031-58535-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics